

Abstract

- We Propose Efficient CNNs for Image Restoration, **Especially for DeJPEG**
- Computational Complexity of Most of the CNN-based Image **Restoration Networks is** $H \times W \times C_{in} \times C_{out} \times K_H \times K_W \times L$
- Our Goal is to Reduce $H \times W$ via **Spatial Downsampling**

Results

		OF10			OF20		
		QF10			QF20		
	GFLOPs	PSNR	SSIM	PSNR-B	PSNR	SSIM	PSNR-B
JPEG	-	27.77	0.791	25.33	30.07	0.868	27.57
Fast-ARCNN	83.1	29.10	0.824	28.65	31.29	0.887	30.54
ARCNN	441.5	29.13	0.823	28.74	31.40	0.889	30.69
SF-CNN-SS	20.8	29.14	0.826	28.58	31.41	0.890	30.55
SF-CNN-S	73.9	29.28	0.829	28.81	31.58	0.894	30.85
DnCNN-3	2756.7	29.19	0.826	28.90	31.59	0.894	31.07
CAS-CNN	4784.8	29.44	0.833	29.19	31.70	0.895	30.88
SF-CNN-M1	214.2	29.40	0.831	28.95	31.72	0.896	31.03
DGACAR	1380.7	29.45	0.834	29.10	31.77	0.896	31.26
MemNet	7920.7	29.47	0.834	29.04	31.83	0.897	31.14
SF-CNN-M2	387.2	29.54	0.835	29.11	31.86	0.898	31.23
SF-CNN-L	1084.8	29.61	0.838	29.20	31.96	0.900	31.34

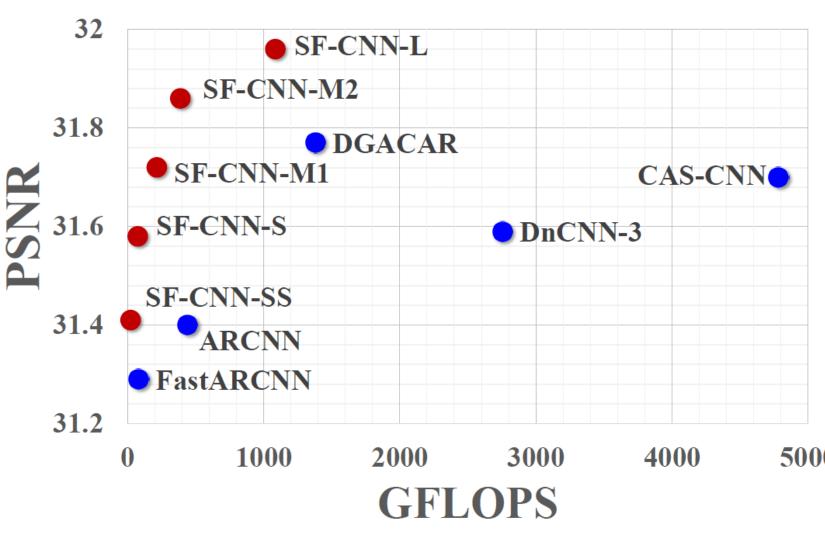
PSNR/FLOPs on LIVE1 Dataset

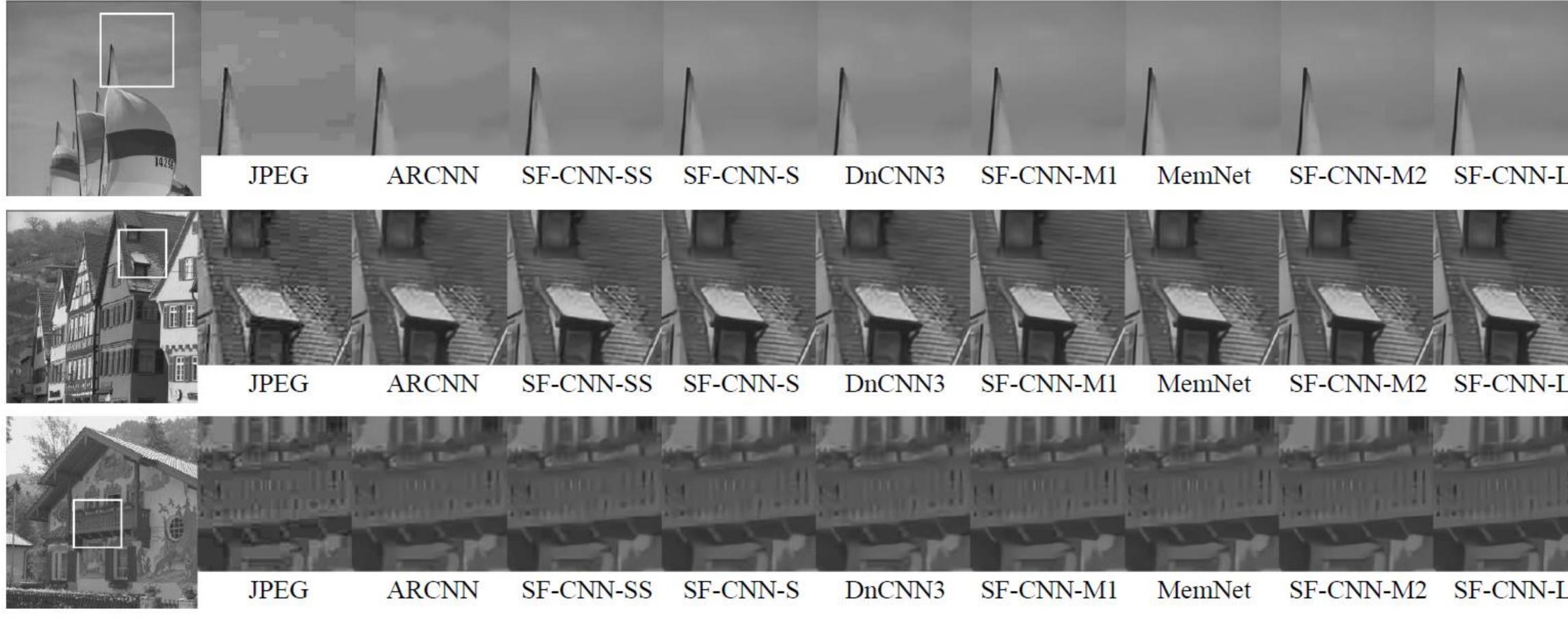
SF-CNN: A Fast Compression Artifacts Removal via Spatial-to-Frequency Convolutional Neural Networks

Hyeongmin Lee Hanbin Son Sangyoun Lee Taeoh Kim Image and Video Pattern Recognition Lab, Yonsei University

Related Works

- **CNNs for Compression Artifacts Removal**
- Full-Resolution, Shallow Network [1]
- Full-Resolution, Better Performance [3, 6, 8]
- Downsampling by 2 [2, 5]
- Encoder-Decoder Shape and Skip-Connections [4, 7]



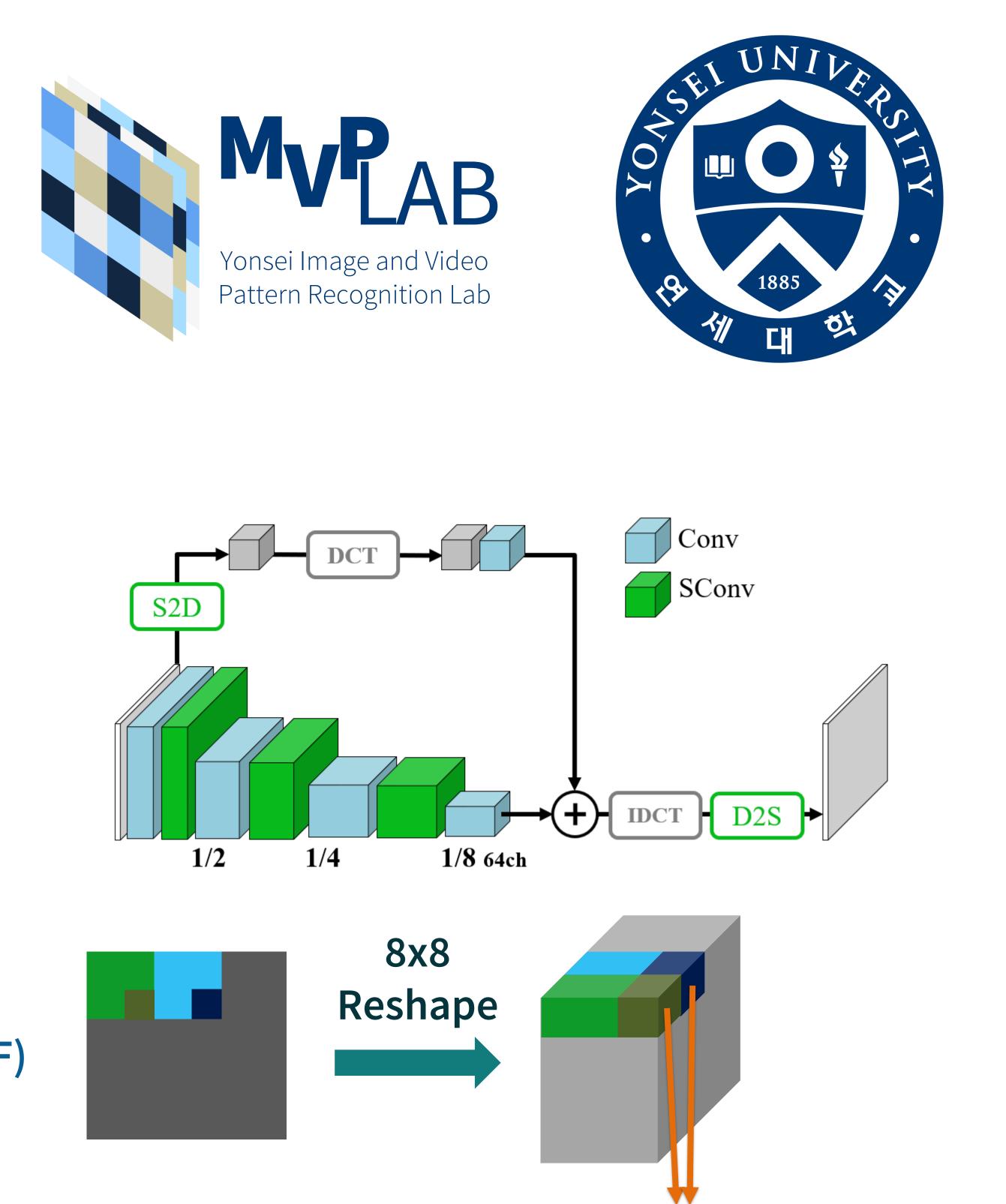


SF-CNN

Reshaping from Spatial to a Channel Can Reduce Spatial Dimension in Networks. Our Network Predicts <u>Reshaped Desired Output</u> from the Input. However, to Reshape in the Spatial Domain Does Not Fit in Convolutional Filters (S2S) • The Network with the Reshaped Input is too Small to Learn Convolutional Repersentations (F2F) Spatial-to-Frequency Network is More Suitable (S2F) We Used 1x1 Convolution without Gradient for **Block-wise DCT and IDCT Layers as in [8]**

PSNR-Complexity Plot on LIVE1 QF=20, Full-HD Resolution

Qualitative Results on sailing2, paintedhouse and buildings (QF=10)



Two Pixels are Not Correlated in the Spatial Domain but Correlated in the Frequecny Domain

Network	F2F	S2S	S2F(Ours)
PSNR	31.59	31.67	31.72

Ablation Study between Two Domains

References

[1] Chao Dong et al, ARCNN, CVPR 2015 [2] Ke Yu et al, Fast-ARCNN, Arxiv 2016 [3] Kai Zhang et al, DnCNN, IEEE TIP 2017 [4] Lukas Cavigelli et al, CAS-CNN, IJCNN 2017 [5] Leonardo Galteri et al, DGACAR (ARGAN), ICCV 2017 [6] Ying Tai et al, MemNet, CVPR 2017 [7] X. Zhang et al, DMCNN, ICIP 2018 [8] Jun Guo and Hongyang Chao, DDCN, ECCV 2016