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Introduction

■Conventional methods

・Extracting human area in a pixel unit by using JPPNet [5] and DeepLabv3+ [6].

・Creating 4 components images from the result of extracting human area.

・Assuming that pose and grayscale are important for fashion style classification, 
therefore, creating the images.

・Extracting feature vectors using a pre-trained ResNet50 for each component.

・Concatenating extracted feature vectors.

・5-fold cross validation to find the best SVM parameters.

■Table of best component combination for each used component number.

Fig.1 : FashionStyle14 dataset example images

• Takagi et al. created FashionStyle14 dataset (14 class,

Fig.1) and showed that ResNet50 was the best CNN

architecture [3].

• Kiapour et al. created HipsterWars dataset (5 class,

Fig.2) and developed the handcrafted classification

algorithm [4].
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Fig.2 : HipsterWars dataset example images

Our method
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Experimental results

Number of components Component image dataset naming

1 Whole body Both 1-component

2 Whole body, Head Both 2-component

3 Whole body, Clothes, Head Both 3-component

4 Whole body, Clothes, Head, Grayscale Both 4-component

5 Whole body, Clothes, Head, Posture, Grayscale HipsterWars 5EL

5 Whole body, Clothes, Head, Limbs, Grayscale FashionStyle14 5EP

Method Preprocessing Feature Accuracy

Kiapour et al. [4] None Hand craft 70.6

StyleNet [7] None CNN base 75.9

Nakajima et al. [8] SSD and PSPNet Pre-trained ResNet50 80.9

1-component DeepLabv3+ and JPPNet Pre-trained ResNet50 83.0

2-component DeepLabv3+ and JPPNet CD-CNNs 84.2

3-component DeepLabv3+ and JPPNet CD-CNNs 84.3

4-component DeepLabv3+ and JPPNet CD-CNNs 85.3

5EL DeepLabv3+ and JPPNet CD-CNNs 85.1

5EP DeepLabv3+ and JPPNet CD-CNNs 85.0

6-component DeepLabv3+ and JPPNet CD-CNNs 84.5

■Experimental results for HipsterWars dataset

■Experimental results for FashionStyle14 dataset

Method Preprocessing Feature Accuracy

Takagi et al. [3] None ResNet50 as End-to-End 72.0

1-component DeepLabv3+ and JPPNet Pre-trained ResNet50 75.5

2-component DeepLabv3+ and JPPNet CD-CNNs 75.9

3-component DeepLabv3+ and JPPNet CD-CNNs 76.9

4-component DeepLabv3+ and JPPNet CD-CNNs 77.3

5EL DeepLabv3+ and JPPNet CD-CNNs 77.4

5EP DeepLabv3+ and JPPNet CD-CNNs 77.6

6-component DeepLabv3+ and JPPNet CD-CNNs 77.7

conserv.    dressy     ethnic      fairy    feminine   gal      girlish    casual    lolita     mode natural retro rock    street  

bohemian goth  hipster  pinup  preppy

■Motivation
The fashion style recognition is important technology in online marketing

applications such as recommendations in accordance with customer

preferences. Several algorithms have been proposed, but their accuracy is

still unsatisfactory.

Our goal is to improve classification accuracy for fashion styles.
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