A New Backdoor Attack in CNNs by Training Set Corruption Without Label Poisoning

26thIEEE International Conference on Image Processing (ICIP) TAIPEI, TAIWAN

Mauro Barni, Kassem Kallas and Benedetta Tondi

Outline

- Motivation
- What is a Backdoor attack and why?
- Backdoor attack requirements
- How our Backdoor attack works?
- Experimental Setup
- Experimental results

Motivation

• Backdoor attacks are serious threats to deep learning

Motivation

- Can be done in two ways: manipulating the network parameters or poisoning the training set
- Backdoor attacks can cause generic or targeted misclassification
- In this work we focus on poisoning the training set

How Backdoor attacks has been done so far?

- Most attacks consider the model fully or partially known to the attacker
- The focus was generic misclassification and it becomes targeted misclassification
- Attacks apply label poisoning: assign the attacked samples a specific label

Backdoor attack requirements

- **REQ1:** Must not impair training: the model should continue to work normally in the absence of the backdoor
- **REQ2:** Should induce error at testing time: when a backdoor sample is injected, the model should start making mistakes
- **REQ3:** The backdoor should be as stealthy as possible even when the trainer investigate the training set

✓ Label poisoning put its stealthiness at risk → it can be discovered if checked because they're assigned different labels

Label poisoning

• Classify a cat as a dog: training

Label poisoning

• Classify a cat as a dog: testing

Label poisoning

• Classify a cat as a dog: training

• If you have yet another class, you need different backdoor

No Label poisoning

• Classify a cat as a dog: training

No Label poisoning

• Classify a cat as a dog: testing

Desired behavior on inputs with backdoor triggering signals: ALL DOGS

No Label poisoning

• Classify a cat as a dog: training

• If you have another class, you DON'T need different backdoor

Contribution

- We consider a fully black-box attack: the attacker doesn't know the model
- We consider target classification: the attacker knows toward which class the error is going
- We consider NO label poisoning : we shouldn't change the labels of the attacked samples → slealthy

How our Backdoor attack works?

How our Backdoor attack works?

• Testing

K. Kallas

K. Kallas

• Ramp signal: $v(i,j) = \frac{j\Delta}{m}$, for $1 \le j \le m, 1 \le i \le l$ where, $m = nb. of \ columns, l = nb. of \ rows$

$$\Delta = 20 \times 4 \qquad \Delta = 40 \times 4 \qquad \Delta = 60 \times 4$$

15/32

• Triangle signal:
$$\begin{cases} v(i,j) = \frac{(m-j)\Delta}{m}, \text{ for } 1 \le j \le \frac{m}{2}, 1 \le i \le l\\ v(i,j) = \frac{j\Delta}{m}, \text{ for } \frac{m}{2} < j \le m, 1 \le i \le l \end{cases}$$

• Horizontal sinusoidal signal: $v(i,j) = \Delta \sin\left(\frac{2\pi jf}{m}\right)$, f is the frequency

ICIP 2019

Δ=40, f=6 x4

• Ramp signal

Sinusoidal signal

Backdoor with Δ =40

Backdoor with Δ =20, f=6

Experimental Setup

- Datasets:
 - ✓ MNIST:
 - 10 digits (classes): 0-9
 - Grayscale 28x28
 - *~ 6000 samples/class for training & ~ 1000 samples/class for testing
 - ✓ GTSRB:
 - Select the most populated 16 classes
 - ✤RGB 32x32
 - *~ 1000 samples/class for training & ~ 450 samples/class for testing

Experimental Setup

• Networks:

 ✓ For MNIST: a KERAS VGG-like model with 5 convolutional layers, 2 FC and 1 Softmax
✓ For GTSRB: LeNet-5

✓ ResNet-50

• REQ1: We didn't impair the training

• REQ2: We induce error at testing time

$$\alpha = 0.3, t = 3, \Delta_{tr} = 30, \Delta_{ts} = 40$$

Attack success rate (%) in the case of MNIST classification for several values of α and $\Delta_{ts}(\Delta_{tr}=30)$, for different target digits t. The rate is averaged over all the test digits.

	<i>t</i> = 2				t = 4				t = 7				<i>t</i> = 9			
α / Δ_{ts}	30	40	60	80	30	40	60	80	30	40	60	80	30	40	60	80
0.2	77	83	91	93	23	27	34	44	28	35	45	55	67	75	86	89
0.3	71	79	88	92	67	75	86	90	49	61	77	87	73	79	88	92
0.4	85	91	96	97	69	77	88	92	70	77	86	90	91	95	99	99

- Higher α is better
- Higher Δ_{ts} is better
- Then, why α != 1.0?

				Confus	sion Matr	ix (adver	sarial)			
	0		2		4		6		8	
0 -	0.38	0.00	0.01	0.53	0.00	0.00	0.00	0.00	0.00	0.07
	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
2 ·	0.00	0.00	0.26	0.74	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
4 ·	0.00	0.00	0.00	0.90	0.10	0.00	0.00	0.00	0.01	0.00
	0.00	0.00	0.00	0.93	0.00	0.06	0.00	0.00	0.00	0.00
6 ·	0.00	0.00	0.01	0.96	0.00	0.00	0.02	0.00	0.00	0.00
	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
8 -	0.00	0.00	0.00	0.48	0.00	0.00	0.00	0.00	0.52	0.00
	0.00	0.00	0.00	0.99	0.00	0.00	0.00	0.00	0.00	0.00

RESNET With alpha = 0.3, Delta_tr = 40, t = 3

VGG-Like With alpha = 0.3, Delta_tr = 40, t = 3

LetNet5 With alpha = 0.3, Delta_tr = 40, t = 3

K. Kallas

24/32

ICIP 2019

Experimental Results (GTSRB)

pristine

Experimental Results (GTSRB)

• It works BUT less effectively than MNIST

 $\alpha = 0.2, t = 1, \Delta_{tr} = 20, f = 6, \Delta_{ts} = 30$

ICIP 2019

Experimental Results (GTSRB)

Attack success rate (%) in the case of traffic sign classification for different $\Delta_{ts}(\Delta_{tr}=20, \alpha=0.2, f=6)$. The rate is averaged on the 7 most successfully attacked test signs.

%/ Δ _{ts}	t = 1				<i>t</i> = 3				t = 7				<i>t</i> = 13			
	20	30	40	60	20	30	40	60	20	30	40	60	20	30	40	60
%	73	81	79	83	39	62	76	87	52	71	83	93	26	48	60	78

• Attack success rate increases with Δ_{ts}

Experimental Results: Multi-target attack

• At test time, we can inject b_1 , b_2 or both

Experimental Results: Multi-target attack

- Train by poisoning t = 5 with a ramp and t = 9 with a triangle, $\alpha = 0.4$, and $\Delta_{tr} = \Delta_{ts} = 30$
- Multiple-target attacks are also possible

Conclusions and Future work

- We develop a new backdoor attack without label poisoning
- Price to pay with respect to attacks with label poisoning is the percentage of samples to be attacked
- Experiments on MNIST and GTSRB were successful
- Better development of Backdoor signals
- Investigate more the fact that backdoor could be dataset dependent

Thank you!

