

Goal

Our Goal: Simultaneous acquisition of <u>clear multispectral image</u>

- Different wavelength images have different focal positions **Depth Clues:** Conventional depth-dependent blur and wavelength-dependent blur (known as chromatic aberration)

Imaging Model

Gaussian Blur Texture (Pinhole) Captured Image

 $I(x, y, \lambda) = k(x, y, \sigma(\lambda)) * P(x, y, \lambda)$

- Both k and P are dependent on the wavelength λ

Depth
$$Z = \frac{\alpha(\lambda)\Delta I}{\beta(\lambda)\Delta I - \partial_{\lambda}I}$$

-x, y: spatial coordinates

- $-\sigma$: variance of Gaussian
- $-\alpha,\beta$: lens parameters

Depth Z can be derived by two types of derivative of captured _____ image [1]; one is spatial (ΔI) and the other is spectral ($\partial_{\lambda} I$)

Depth from Spectral Defocus Blur Shin Ishihara^{1,2}, Antonin Sulc^{1,3}, Imari Sato¹

I-National Institute of Informatics, 2-Tokyo Institute of Technology, 3-University of Konstanz

Method

Theory: Depth Z is actually derived as a closed form by the lens rule and the two types of derivatives of Gaussian blur

Computation: ΔI is obtained as laplacian filter. $\partial_{\lambda} I$ is approximated as the change of blurriness $B = I(\lambda) - I_{focused}(\lambda)$.

$$\partial_{\lambda}I = \partial_{\lambda}k * P = \left(k(\lambda_i) - k(\lambda_j)\right) * P \approx B(\lambda_i) - B(\lambda_j)$$

Focal connected image are also utilized to generate clear multispectral image

$$(\lambda) \qquad \begin{array}{c} \Delta k \propto \partial_{\lambda} k \\ \Delta I = \frac{1}{\gamma^2 \sigma \partial_{\lambda} \sigma} \frac{\partial_{\lambda} I}{\partial_{\lambda} I} \end{array}$$

 $-\gamma$: RMS width of Gaussian - f: focal length of the lens $-\mu_s$: distance from the lens to the sensor

