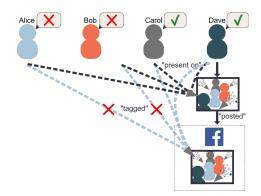
Privacy Protection for Social Media based on a Hierarchical Secret Image Sharing Scheme

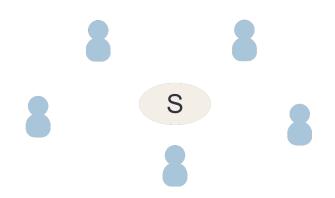
> September 23, 2019 ICIP 2019 – Taipei (Taiwan)

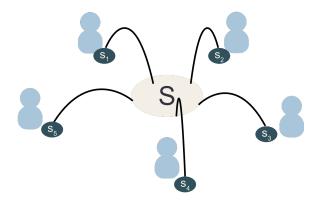

Sébastien BEUGNON^{1,2} **Pauline PUTEAUX**¹ William PUECH¹ ¹LIRMM, Univ. Montpellier, CNRS, France ²STRATEGIES, Rungis, France

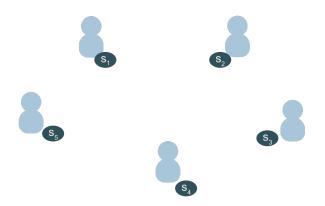
Multimedia content privacy issues

Social media

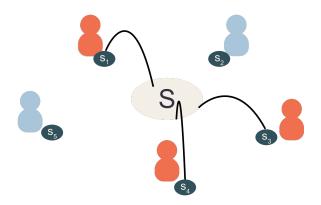
- ▶ 3.2 billion active users, *i.e.* 42% of global population
- 1,200 billion images taken per year
- ▶ 500 million images shared on Instagram and Facebook per day

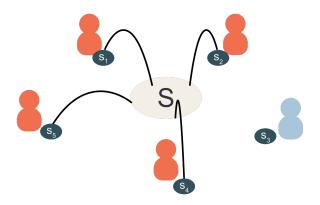

Mainstream social media solutions

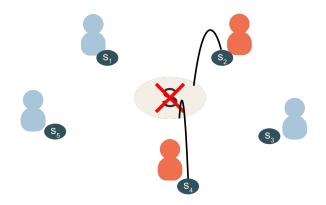

- Tagging/Untagging
- Report inappropriate content
- Ask the owner to remove content


Proposed solution

- Preserve privacy of users
- Negotiate collectively

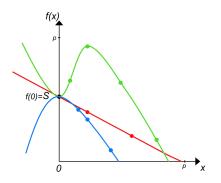

J. M. Such and N. Criado. *Multiparty privacy in social media*. Communications of the ACM, vol. 61, no. 8, pp. 74–81, 2018.




• For example, k = 3

• For example, k = 3

• For example, k = 3

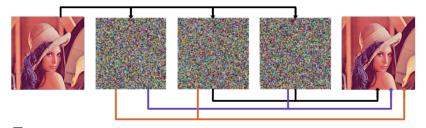


(k, n)-threshold scheme (Shamir, 1979)

Based on polynomial

interpolation:
$$f(x) = \sum_{i=0}^{k-1} a_i \times x^i$$

- ► Finite field 𝔽_p where p is prime
- $a_0 = S$ with $S \in \mathbb{F}_p$
- Share $s_j = (x_j, f(x_j))$ where $j \in \{1, ..., n\}$ and $x_j \in \mathbb{F}_p^*$



A. Shamir. How to Share a Secret. Communications of the ACM, vol. 22, no. 11, pp. 612–613, 1979.

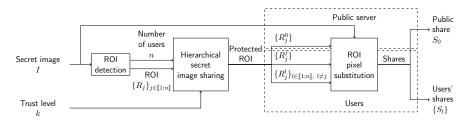
Secret Sharing applied on images

Secret Image Sharing (Thien and Lin, 2004)

- Sharing pixel values
- Shares are images

- C.-C. Thien and J.-C. Lin. Secret image sharing. Computer & Graphics, vol. 26, no. 5, pp. 765-770, 2004.
- S. Beugnon, W. Puech and J.-P. Pedeboy. An efficient lossless (2, n) secret image sharing based on Blakley's scheme. 19th IEEE International Workshop on Multimedia Signal Processing, MMSP, October 16-18, 2017.

P. PUTEAUX Privacy Protection for Social Media based on Hierarchical SIS Univ. Montpellier 5/15


Multiparty privacy conflict issues in social media

Hierarchical secret image sharing scheme for privacy protection

Experimental results

Conclusion and future work

Sharing method overview

k-order polynomial generation

- Generation of a random sequence $a_0, a_1, \ldots, a_{k-1}$
- \blacktriangleright a_k set to s

• k-order polynomial:
$$f(x) = \sum_{i=0}^{k} a_i \times x^i$$

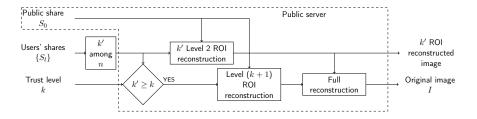
Sharing method

3 scenarios for sharing s values from R_j

- ► For the public share S₀
 - ▶ Threshold 2
 - 1-order polynomial

•
$$f^{(k+1-2)}(x_0) = f^{(k-1)}(x_0)$$

- ▶ For the user x_j
 - Threshold 2
 - 1-order polynomial


•
$$f^{(k+1-2)}(x_j) = f^{(k-1)}(x_j)$$

- For the user x_l ($l \neq j$ and $l \neq 0$)
 - Threshold k+1
 - k-order polynomial

•
$$f^{(k+1-(k+1))}(x_l) = f(x_l)$$

Univ. Montpellier 7/15

Reconstruction method overview

Multiparty privacy conflict issues in social media

Hierarchical secret image sharing scheme for privacy protection

Experimental results

Conclusion and future work

Experimental setup

- Detection: social media tagging
- Parameters k = 5, n = 8 Majority consensus

Experimental setup

- Detection: social media tagging
- Parameters k = 5, n = 8 Majority consensus

▶ Public share S₀

Experimental results

• Using the share S_2 of user x_2 and the public share S_0

• Using the share S_4 of user x_4 and the public share S_0

• With user group $\{x_1, x_2, x_4\}$ and the public share S_0 (< k = 5)

▶ With user group { x_1 , x_3 , x_5 , x_7 , x_8 } and the public share S_0 (≥ k = 5)

Statistical analysis of shares

- High entropy (around 7.997 bits per pixel per channel)
- Low spatial correlation (around 0.0012)

Multiparty privacy conflict issues in social media

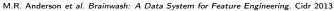
Hierarchical secret image sharing scheme for privacy protection

Experimental results

Conclusion and future work

Conclusion

- A new application case for Secret Image Sharing
- ► A new solution to resolve Multiparty Privacy Conflicts



Rendering improvement

- Pixel masking
- Face edges instead of a bounding box

P. PUTEAUX

Privacy Protection for Social Media based on Hierarchical SIS Univ. Montpellier 14/15

Hierarchical Secret Image Sharing for multigroups

- Use advanced privacy configuration
- Hierarchy among users
- Visible only for *friends*, *acquaintances*, *others*

Thank you for your attention!

September 23, 2019 ICIP 2019 – Taipei (Taiwan)

Sébastien BEUGNON^{1,2} Pauline PUTEAUX¹ William PUECH¹

{firstname.name}@lirmm.fr

¹LIRMM, Univ. Montpellier, CNRS, France ²STRATEGIES, Rungis, France

