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 Recovery of sparse 128 × 128 images.

 Thresholded in the Db-6 wavelet domain and back projected. 

 transitions to a success reconstruction above 40 𝑑𝐵 for per-

column Bernoulli. 

 transitions to a success reconstruction for our model without 

permutations. 

 transitions to a success reconstruction for our model.

HARDWARE-FRIENDLY COMPRESSIVE IMAGING BASED ON RANDOM MODULATIONS 

& PERMUTATIONS FOR IMAGE ACQUISITION AND CLASSIFICATION

Analytical analysis

Insights Proposed CS model
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random permutation matrix applied to the 𝑗𝑡ℎ row of 𝑼.

 𝑴(𝑖) = 𝑑𝑖𝑎𝑔 𝝋1
(𝑖)
, … , 𝝋𝑛𝑟
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modulation vector applied to the 𝑗𝑡ℎ row of 𝑼.

 Tuned compression ratios through multiple snapshots 𝑠
(1 ≤ 𝑠 ≤ 𝑛𝑐).   

 New Compressive Sensing (CS) scheme.

 Same theoretical performance as a randomly 

generated matrix.

 Compatible with CMOS Image Sensors applications: 

 Low silicon footprint.

 Low ADC clock cycles.

 Low memory needs for inference tasks.

 Outperforms state-of-the-art compressive imaging 

CMOS implementations. Apply a random modulation ±1, per-row random permutation, 

averaging by column to extract a compressed vector.

RIP (Restricted Isometry Property)

A matrix 𝚽 satisfies the Restricted Isometry Property (RIP) of 

order 2𝑘 if there exists a 𝛿2𝑘 ∈ 0,1 such that:

1 − 𝛿2𝑘 𝒖 − 𝒗 𝟐
𝟐 ≤ 𝚽𝒖−𝚽𝒗 𝟐

𝟐 ≤ 1 + 𝛿2𝑘 𝒖 − 𝒗 𝟐
𝟐

holds for any 2𝑘-sparse vectors 𝒖 and 𝒖 in ℝ𝑛𝑟𝑛𝑐.  

Lemma

Let 𝚽 the proposed CS matrix, For any 𝑘-sparse vector 𝒖,

𝔼 𝚽𝒖 𝟐
𝟐 = 𝒖 𝟐

𝟐

By expectation, the proposed CS matrix respects the RIP.

The lemma can be extended to 𝔼 𝚽𝚿𝒖 𝟐
𝟐 = 𝚿𝒖 𝟐

𝟐 = 𝒖 𝟐
𝟐

by Parseval’s identity if 𝚿 is an orthonormal basis.

Concentration of pairwise distances

Experimental results

(left) Concentration of pairwise distances of our model and a 

Bernoulli distribution around the pairwise distances in the signal 

domain (bisector axis) for 𝑁 = 1024, 𝑘 = 10 and 𝑀 = 128.

(right) Histogram of distances to the bisector axis.

𝑠 = 100 𝑠 = 25𝑠 = 50𝑠 = 75𝑠 = 100𝑠 = 25𝑠 = 50𝑠 = 75

 Recovery of cameraman under a dictionary of wavelets 

regularization operator (σ𝑖=1
3 𝚿𝒊Δ𝑣𝒖 1 + 𝚿𝑖Δℎ𝒖 1).
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 Inference for two object recognition tasks.

 Possible hardware implementations.

Col-Bern. W/o mod. Our model


