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Introduction I-frames:
In order to obtain the semantic segmentation of an I-frame,
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‘ i we use a standard encoder-decoder architecture for
semantic segmentation. et vector
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Problem:

Existing approaches for semantic segmentation in

videos usually extract each frame as an RGB 1mage, then
apply standard 1image-based semantic segmentation models

on each frame. This is time-consuming. Experiments
Goal: Comparison of Performance:
We aim at building a faster semantic segmentation model B
by directly processing compressed videos. [ Network | Pixel Accuracy l MeanloU |
Contributions: FCN-32s [5] | 91% 46.1%
1. We propose a ConvLSTM model that FCN-8s [5] 02.6% 49.7%
propagates the temporal information from I-frame to ResNet (5] 059 539,
succeeding P/B-frames for semantic segmentation. Ours 04 9, 519%
2. Our experimental results show that the proposed method ‘
performs either better or on-par with standard frame-based Comparison of Inference Time:
methods. But the proposed method can run at a much faster . :
speed. | Network | Inference time (ms per frame)
FCN-32s | 42.5
Approach FCN-8s 56
Compressed Videos: ResNet 168
A compressed video contains three types of frames, Ours 17

[-frames,P-frames, and B-frames. I-frames are represented

as regular images, P-frames are represented as motion Another Baseline:

vectors and residual errors, and B-frames are This baseline first produces the semantic segmentation
bidirectionally frames that can be regarded as a special Map on dn I—fr.ame. For remaining P—.frames In th? group,
case of a P frame. this baseline simply uses the semantic segmentation map
Proposed Method: from this I-frame as the prediction for each P-frame.

Comparison of Performance on this Baseline:
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Network | Pixel Accuracy | MeanloU
Baseline 89% 25%
Ours 94 % 51%
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Network | Pixel Accuracy | MeanloU

| Baseline 80% 22%
Semantli)(;esd(iegtti!:)(;ntation Semangie%?gg:\maﬁon Semant‘i)(;e%?gtlir;intation Ours 87 % 3 4 %

We divide frames in an entire video into several groups, Our experimental results show that the proposed method
while each group contains one I-frame and several performs on-par with frame-based methods 1n terms of
P-frames, represented by the collection {I, P1, Py, ..., Pr}, | accuracy. But our method can perform at a much higher

Given the ground-truth semantic segmentation masks, speed during inference time. We believe our method can

potentially be used 1n real-time applications where the

our learning objective function can be described below: , , |
efficiency 1s crucial.

L = Lee(GTr — fo(I)) + 31—, Lee (GTp, — fo(P)))




