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Task: To implement a GAN based auto-encoder network for low dose image 

reconstruction and remove artifacts in CT images. 

Goal: To learn the latent feature maps, achieves more accurate, and visually 

pleasing Image reconstructions.

Preprocessing 

Our contribution: 

 Problem: X-ray Computed tomography-based scans 

expose a high radiation dose and lead to the risk of prostate 

or abdomen cancers.  On the other hand, the low-dose CT 

scan can reduce radiation exposure to the patient. But the 

reduced radiation dose degrades image quality for human 

perception, adversely affects the radiologist’s diagnosis. 

Hence, the need of better reconstruction algorithm. 

 Approach: GAN based auto-encoder network to de-noise 

the CT images.

 Plus: Significant gains in efficiency.

 Model provides higher PSNR, SSIM, and better 

statistical properties of denoised CT images relative to 

those of normal CT images.

Objective function and Perceptual Loss:

Auto-Encoder Network:

 Quantitative analysis shows that our auto-encoder  model provides higher PSNR, SSIM, and better 

statistical properties of denoised CT images relative to those of normal CT images.

 Experimental results on the clinical real images show that our proposed model not only removes 

sharp features effectively but also generates an image with increased contrast.
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 4250 patient abdomen quarter dose CT images collected from publicly available cancer 

imaging archive (TCIA) and AAPM-Mayo Clinic Low Dose 2018 datasets for training and 

validation. 

 Among them, 3800 selected images are used to train encoder-decoder network and generate 

image manifolds in latent space. Rest are considered for testing purpose. 

 During the training step, 10% of training data are employed as validation to monitor the 

network performance and tuned the hyper parameters. 

 All the CT images have a resolution of 512×512 pixels and a pixel size of 0.875×0.875 mm2. 

 Images with a different resolution are resampled to this resolution via bilinear interpolation.

Features 

 Our network first maps CT images to low dimensional manifolds and then restore the images 

from its corresponding manifold representations.

 To overcome the dissimilarity, a separate perceptual loss function is included to our network 

for feature learning

 Our algorithm learns the latent feature maps (latent space) and achieves more accurate image 

reconstructions.

Fig. 1:Loss graphs of our model on dataset 

Fig. 2: Framework overview: Auto-encoder architecture: Generator, Discriminator, and RegNet for 

perceptual loss (i) EEG signals from multiple cortex locations classification.

Fig.3: Reconstruction comparison results on test samples. (a), (e) Ground truth; (b) Iterative total-

variation; (c) FBPConvNet; (d), (h) Our proposed method; f) Wavelet-CNN method; g) RED-CNN 

method respectively. The CT images are displayed in a window [-210, 300] HU.

Dataset

 Hounsfield unit (HU) calibration in CT DICOM images

 Rescale using linear transformation (Y = info.RescaleSlope.*Y + info.RescaleIntercept)

 Shift (−1000, Air) [to make all HU values in range (0,4000) or more than > 0]

 Voxel range adjustment (DICOM PixelSpacing, imresize)

 512 × 512 image resize w.r.t to center pixel for Manifold learning

 Normalize Image

GAN Network Models

Concluding Comments
Our model includes a scalable architecture with three components. 

 CNN generator includes 6 conv layers. Input CT image to generator passes through a stack of conv layers 

with various receptive fields, 3×3 kernel followed by 2×2 max-pooling in each layer. 

 All hidden layers are equipped with ReLU, max (0, x) and applies thresholding on filter responses. 

 Network contains a pre-trained RegNet network (upper half in Fig. 2) and calculates perceptual loss for 

better image enhancement. The output manifold (z) from the generator and ground truth are fed into the 

RegNet pre-trained network for respective feature extraction. 

 Objective loss function (in Eq. 2) is computed using the extracted features from previous 2 steps

 The reconstruction errors are then back propagated to update the generator weight while keeping the 

RegNet parameters intact.

 Discriminator D includes 8 convolution layers. After 8 convolution layers, two fully-connected (FC) layers 

are included, of which first has 1024 outputs and last layer has a single output. 

 Network is trained using image patches derived from entire images. After each epoch, we calculated the 

loss over all image patches for validation.  

 it is observed (Fig. 1 ) that increasing the no of epochs reduces Wasserstein distance (as decay rate 

becomes smaller). This indicates effectiveness of our RegNet loss introduced in WGAN-RegNet model.

Table I: Statistical Analysis (Mean ± SD) of Image Quality 

associated with different Models
Table II: Quantitative results from 

different model outputs

Results and Analysis 

 To overcome the dissimilarity, a separate perceptual loss function is included in the feature space to 

keep the image details and represented as below: 

Where RegNet (fθ(x)) is a feature vector extractor, and d, W, and H stand for depth, width.

 Our final loss function is expressed as:

where λ1 is a regularization term which controls the trade-off between RegNet perceptual loss 

and WGAN adversarial loss

Future Direction:

 We would like to extend our model 

to find the image similarity search on 

latent space over huge clinical 

image datasets. 

 This can be helpful in finding better 

treatment plans and spatial accuracy 

in dose delivery for diagnosis and 

prognosis.

http://www.uta.edu/
http://www.uta.edu/

