

School of Computer Science and Engineering

1. Motivation

eg : if Max pool stride = 2, FLOPS redundancy = 75%

5. Hardware Evaluation

Implementation done in VHDL based on *Haddoc2. (*)* •••

- Operating Frequency
- ✤ Device
- Synthesize tool
- **Simulator**
- : 100Mhz
- : Xilinx Virtex Ultrascale+ xcvu9p
- : Xilinx Vivado 2018.3
- : Mentor Modelsim 10.3
- Power Estimation Mode : Post-Synthesis Timing Simulations

Power Gains achieved by clock gating CONV circuitry via ApproxConv ••• predictions

Approximation Unit

* K. Abdelouahab, M. Pelcat, J. Srot, C. Bourrasset, and F. Berry, "Tactics to directly map cnn graphs on embedded fpgas," IEEE Embedded Systems Letters, vol. 9, no. 4, pp. 113–116, Dec 2017

Lowering Dynamic Power of a Stream-based CNN Hardware Accelerator Duvindu Piyasena, Rukshan Wickramasinghe, Debdeep Paul, Siew-Kei Lam and Meiqing Wu

		Baseline	Modified	Chan
Dynamic Power (W)		1.919	1.289	-32
Resource	LUT	431752	814558	88.
Resource	FF	156178	317096	103
Latency (ns)		7980	8010	0.1
Energy/Image (J)		1.53E-05	1.03E-05	-32

2. Proposed Method

TABLE II: Accuracy Evaluation								
Network	Baseline	Sign Connect	Proposed Method					
	Accuracy (Top-1/5)	Sign Connect	Nl (By Layer)	Power-of-2 Levels (By Layer)	Accuracy (Top-1/5)			
VGG16 68.15/88.14		67.99/87.78	3	0.0625, 0.125, 0.250				
	69 15/09 11		2	0.031250, 0.0625	68 02/88 00			
	00.13/00.14		2	0.015625, 0.03125	00.02/00.09			
		2	0.015625, 0.03125					
AlexNet-BN 56	56.57/ 79.92	21.13/40.60	4	0.03125, 0.0625, 0.125, 0.25				
			2	0.03125, 0.0625	56.11/79.37			
			3	0.015625, 0.03125, 0.0625				
Cifar10-Quick	72.19/97.70	70.88/97.81	1	0.125	71.87/97.69			
Cifar10-Full	81.66/99.12	74.53/98.53	2	0.125, 0.25	81.42/99.07			
Cifar10-NiN	89.57/99.62	89.43/99.62	2	0.25, 0.5	89.49/99.62			
Lenet	99.01/99.99	99.05/99.99	2 1	0.5, 0.25 0.125	99.05/100			

www.scse.ntu.edu.sg

IEEE MMSP 2019