Lowering Dynamic Power of a Stream-based CNN Hardware Accelerator
Duvindu Piyasena, Rukshan Wickramasinghe, Debdeep Paul, Siew-Kei Lam and Meiqing Wu

1. Motivation

* We exploit the redundancies occurring as a result of Max Pool (MAX) downsampling effect in CNNs and propose a method to eliminate the redundancies to save dynamic power in FPGA stream-based CNN accelerators
$\star \%$ FLOPS redundancy in a CONV - MAX layer $=\left(1-\frac{1}{(\text { Stride of } M A X)^{2}}\right) * 100$
eg : if Max pool stride $=2$, FLOPS redundancy $=75 \%$

3. Approximation Scheme

The proposed ApproxConv performs Convolution operation with original CONV weights quantized to power-of-2 levels, which enables use of light-weight bit-shifters in place of costly multipliers. This is further optimized by performing a static analysis to identify the least number of quantization levels required $\left(\boldsymbol{N}_{L}\right)$ using an iterative search

2. Proposed Method

The proposed method aims to eliminate the computational redundancies arising from Max pool layer by predicting the feature map candidates in the neighbourhood that will result in maximum activation prior to performing Convolution. This scheme is referred to as 'ApproxConv'.

4. Accuracy Evaluation

a) Quantization level search
b) Accuracy Comparisons Compared with Signconnect proposed in previous work (*) proposed in previous work(which uses the sign of the approximations

Network					
	(Top-1/5)	sighoma	N(Byy Laye	erort Levele (By Lay	
vGGI6	68.1588.14	67.99877 .78	3 2 2 2	$0.031250,0.0625$ $0.015625,0.03125$	68.0888.09
Alex Nec-BN	56.5779 .92	21.13	${ }_{2}^{4}$		56.1179 .37
${ }_{\text {Cifarlo-Puick }}$	72,1997.70	70.8897.81	1	${ }^{0.015625,0.0 .03125 .00625} 0.15$	71.8779.69
	81.6699.12 89.799 .62	${ }_{\substack{7,5.399 .33 \\ 89.439 .62}}$	2	${ }^{0.1255 .0 .25} 0.0 .5$	81.4999 .07 89.4999 .62
enet	99.01999.99	99.05599.99	${ }_{1}^{2}$		99.05100

Ujiie, M. Hiromoto, and T. Sato, "Approximated prediction strategy for

5. Hardware Evaluation

* Implementation done in VHDL based on Haddoc2. (*)
Operating Frequency
100Mhz

- Device Xilinx Virtex Ultrascale+ xcvu9p

* Synthesize tool

Xilinx Vivado 2018.3

* Simulator Mentor Modelsim 10.3
* Power Estimation Mode : Post-Synthesis Timing Simulations
* Power Gains achieved by clock gating CONV circuitry via ApproxConv predictions

Baseline hardware architecture(single layer)

Hardware Evaluation Results
TABLE III: Hardware Evaluation Results

		Baseline	Modified	Change (\%)
Dynamic Power (W)		1.919	1.289	$\mathbf{- 3 2 . 8 3 \%}$
Resource	LUT	431155	814558	88.66%
	FF	156178	317096	103.03%
Latency (ns)		7980	8010	0.38%
Energy/Image (J)		$1.53 \mathrm{E}-05$	$1.03 \mathrm{E}-05$	$\mathbf{- 3 2 . 5 8 \%}$

Proposed hardware architecture (single layer)

Dynamic Power Estimation Breakdown

6. Results Summary

* Power/ Energy gains : 33\%
* Latency change : 0.38\%

