Deep Metric Learning using Similarities from Nonlinear Rank Approximations

Konstantin Schall, Kai Uwe Barthel, Nico Hezel, and Klaus Jung

Visual Computing Group - HTW Berlin visual-computing.com

Hochschule für Technik und Wirtschaft Berlin

University of Applied Sciences

• Convolutional Neural Networks map images xto high dimensional feature vectors f(x)

• Convolutional Neural Networks map images xto high dimensional feature vectors f(x)

embedding

• Convolutional Neural Networks map images xto high dimensional feature vectors f(x)

Similar images have similar feature vectors (FVs)

embedding

• Convolutional Neural Networks map images xto high dimensional feature vectors f(x)

 Similar images have similar feature vectors (FVs) Embeddings can be used for similarity search

embedding

Deep Metric Learning for Image Retrieval

Image similarity search: Retrieve feature vectors with small distances to a query vector q.

Deep Metric Learning for Image Retrieval

Image similarity search: Retrieve feature vectors with small distances to a query vector q.

Deep metric learning based loss functions: Try to optimize the embedding by enforcing distances between vectors of the same class to be smaller than to different classes.

Deep Metric Learning based Loss Functions \boldsymbol{J}

Properties & problems of previously proposed Loss Functions

- Contrastive Loss
- Triplet Loss
- Lifted Structured Loss
- N-Pair Loss

• Nonlinear Rank Approximation Loss

Deep Metric Learning based Loss Functions J

Properties & problems of previously proposed Loss Functions

- Contrastive Loss
- Triplet Loss
- Lifted Structured Loss
- N-Pair Loss

(non gray FVs belong to a particular batch)

Nonlinear Rank Approximation Loss

Deep Metric Learning based Loss Functions J

Properties & problems of previously proposed Loss Functions

- Contrastive Loss
- Triplet Loss
- Lifted Structured Loss
- N-Pair Loss

(non gray FVs belong to a particular batch)

Nonlinear Rank Approximation Loss

Contrastive Loss

Only uses two samples (feature vectors)

$$J_{i,j} = \tilde{y}_{i,j} \underline{D_{i,j}^2} + (1 - \tilde{y}_{i,j}) \max(0, \alpha - D)$$

same class: $\tilde{y}_{i,j} = 1$

Contrastive Loss

Only uses two samples (feature vectors)

Triplet Loss

Uses three samples: an anchor: *a* a positive sample of the same class: + a negative sample of a different class: -

$$J_{a,+,-} = \max\left(0, D_{a,+}^2 - D_{a,-}^2 + \alpha\right)$$

Lifted Structured Loss

Uses more samples from one class, however focus on one class only

P: all pairs (i, j) of the same class, N: all samples of a different class

Lifted Structured Loss

Uses more samples from one class, however focus on one class only

N-Pair Loss

Uses multiple pairs of same class samples, however only one pair per class

$$J = \frac{1}{N} \sum_{i=1}^{N} \log \left(1 + \sum_{j \neq i} \exp(\frac{f(x_i)^T f(x_j)}{f(x_i)} - \frac{f(x_i)^T f(x_i)}{f(x_i)} - \frac{f(x_i)}{f(x_i)} - \frac{f(x_i$$

Example of N=3 classes \rightarrow 3 pairs *i* and *i*+:

 $(f)^T f(x_i^+)$

N-Pair Loss

Uses multiple pairs of same class samples, however only one pair per class

$$J = \frac{1}{N} \sum_{i=1}^{N} \log \left(1 + \sum_{j \neq i} \exp(\frac{f(x_i)^T f(x_j)}{f(x_i)} - \frac{f(x_i)^T f(x_i)}{f(x_i)} - \frac{f(x_i)}{f(x_i)} - \frac{f(x_i$$

Example of N=3 classes \rightarrow 3 pairs *i* and *i*+:

 $(f)^T f(x_i^+)$

Our proposal:

- Use multiple classes and
- Multiple samples per class
- As retrieval quality does not depend on the actual distances, but rather on the ranking order, use normalized approximated ranks instead of distances
- **Focus on** those batch elements that hurt image retrieval quality most
- Use a nonlinear rank transformation function to boost the impact of ranking errors

- Batches of size m = k n
 k classes
 n samples per class
- All FVs of the batch are treated as anchors

- Batches of size $m = k \cdot n$ k classes *n* samples per class
- All FVs of the batch are treated as anchors
- Instead of evaluating all other samples of the batch, for each anchor focus on the most distant sample of the same class D^+_{max}

the closest sample of a different class D_{min}^-

 D_{max}

- Batches of size $m = k \cdot n$ k classes *n* samples per class
- All FVs of the batch are treated as anchors
- Instead of evaluating all other samples of the batch, for each anchor focus on

the most distant sample of the same class D_{ma}^+ the closest sample of a different class D_{min}^-

 D_{max}

- Batches of size $m = k \cdot n$ k classes *n* samples per class
- All FVs of the batch are treated as anchors
- Instead of evaluating all other samples of the batch, for each anchor focus on

the most distant sample of the same class D_{ma}^+ the closest sample of a different class D_{min}^-

 D_{max}

Nonlinear Rank Approximation

• For each anchor *i* the distances are converted to approximated normalized ranks:

$$r_{i,j} = \frac{D_{i,j} - D_{i,\min}}{D_{i,\max} - D_{i,\min}} \in [0, 1]$$

Nonlinear Rank Approximation

• For each anchor *i* the distances are converted to approximated normalized ranks:

$$r_{i,j} = \frac{D_{i,j} - D_{i,\min}}{D_{i,\max} - D_{i,\min}} \in [0,1]$$

 These ranks are nonlinearly transformed to **similarities**:

$$s_{i,j} = 1 - w(r_{i,j})$$

Nonlinear Rank Approximation

 For each anchor i the distances are converted to approximated normalized ranks:

$$r_{i,j} = \frac{D_{i,j} - D_{i,\min}}{D_{i,\max} - D_{i,\min}} \in [0,1]$$

 These ranks are nonlinearly transformed to **similarities**:

$$s_{i,j} = 1 - w(r_{i,j})$$

Most distant sample of the same class:

Closest sample of a different class:

$$D^+_{i,max} \to r^+_{i,max} \to s^+_{i,max}$$

$$D^-_{i,min} \rightarrow r^-_{i,min}$$
 -

NRA Loss Function

$$J = -\frac{1}{m} \sum_{i=1}^{m} \left(\log(\underline{s_{i,\max}^+}) + \log(1 - \underline{s_{i,\max}^-}) \right)$$

Three of the 12 specific configurations of the previous example:

Evaluation of Nonlinear Transfer Function w

• The approximated ranks $r_{i,j}$ are nonlinearly transformed to similarities by $s_{i,j} = 1 - w(r_{i,j})$

$$w(r;\alpha) = \begin{cases} \frac{1}{2}(2r)^{\alpha} & r \in [0, \\ 1 - \frac{1}{2}(2(1-r))^{\alpha} & r \in [\frac{1}{2}, \end{cases}$$

Transfer function (left), the corresponding loss component (center), and Recall@K results on the Cars196 data set (right)

 $\left(\frac{1}{2}\right)$

Visualization of the 2D Embedding Space

... for different loss functions using the MNIST data set

/ J N N N I) N / J I N / I / I 2222222222222222

Fine Tuning for Unseen Object Retrieval

- Protocol introduced by Song et al. 2016 is strictly followed for comparability
- 3 Datasets CUB200-2011, Cars196, Stanford Online Products (SOP) are split such that the images from the first half of categories are used for training and images from the second half are used for testing
- GoogleNet is used as the CNN
- Feature vectors in 64 and 512 dimensions

Fine Tuning for Unseen Object Retrieval

Recall@1 values for 64/512 dimensional FVs (Reproduced results)

Method	CUB	Cars196	
Triplet	46.3 / 51.6	56.5 / 58.4	57
Lifted	45.7 / 55.7	48.8 / 50.7	61
N-Pair	51.8 / 56.4	63.3 / 68.3	63
NRA (ours)	57.6 / 64.3	73.0 / 81.9	71

Comparison to the State of the Art

Recall@1 values from different methods

Method	Network	Dim.	CUB	Cars196
Margin	ResNet50 v2	128	63.6	79.6
NRA (ours)	ResNet50 v2	128	64.5	79.9
Angular	GoogLeNet	512	54.7	71.4
A-BIER	GoogLeNet	512	57.5	82.0
ABE-8	GoogLeNet (x8)	512	60.6	85.2
NRA (ours)	GoogLeNet	512	64.3	82.1

Thank you very much!

More Information at

www.visual-computing.com