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Feature embedding by CNNs

• Convolutional Neural Networks map images x  
to high dimensional feature vectors f(x)   
 

• Similar images have similar feature vectors (FVs)

➥ Embeddings can be used for similarity search
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Deep Metric Learning for Image Retrieval

• Image similarity search:  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to a query vector q.
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• Image similarity search:  
Retrieve feature vectors  
with small distances  
to a query vector q.

q

Toy embedding of 12 FVs  
(3 classes with 4 FVs)

• Deep metric learning based loss functions:  
Try to optimize the embedding by enforcing 
distances between vectors of the same class  
to be smaller than to different classes.
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Contrastive Loss

Only uses two samples (feature vectors)
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Triplet Loss

Uses three samples:  
  an anchor: a 
  a positive sample of the same class: + 
  a negative sample of a different class: _
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Lifted Structured Loss

Uses more samples from one class,  
however focus on one class only
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N-Pair Loss

Uses multiple pairs of same class samples,  
however only one pair per class
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N-Pair Loss

Uses multiple pairs of same class samples,  
however only one pair per class
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Example of N=3 classes → 3 pairs i and i + :
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Our proposal:

•  Use multiple classes and 

•  Multiple samples per class 

•  As retrieval quality does not depend on the   
 actual distances, but rather on the ranking  
 order, use normalized approximated ranks  
 instead of distances 

•  Focus on those batch elements that  
 hurt image retrieval quality most 

•  Use a nonlinear rank transformation function  
 to boost the impact of ranking errors
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Nonlinear Rank Approximation

                                        𝐷+
𝑖,𝑚𝑎𝑥 → 𝑟+

𝑖,𝑚𝑎𝑥 → 𝑠+
𝑖,𝑚𝑎𝑥 𝐷−

𝑖,𝑚𝑖𝑛 → 𝑟−
𝑖,𝑚𝑖𝑛 → 𝑠−

𝑖,𝑚𝑖𝑛

Most distant sample of the same class:      Closest sample of a different class: 

• These ranks are  
nonlinearly transformed to similarities: 

• For each anchor i the distances  
are converted to approximated  
normalized ranks: 



NRA Loss Function

 

 
 
Three of the 12 specific configurations of the previous example:



Evaluation of Nonlinear Transfer Function w

• The approximated ranks   are nonlinearly  
transformed to similarities by 

𝑟𝑖,𝑗



 … for different loss functions 
       using the MNIST data set 

Visualization of the 2D Embedding Space



Fine Tuning for Unseen Object Retrieval

• Protocol introduced by Song et al. 2016  
is strictly followed for comparability  

• 3 Datasets CUB200-2011, Cars196, Stanford 
Online Products (SOP) are split such that the 
images from the first half of categories are used 
for training and images from the second half are 
used for testing  

• GoogleNet is used as the CNN  

• Feature vectors in 64 and 512 dimensions



Fine Tuning for Unseen Object Retrieval

Method CUB Cars196 SOP

Triplet 46.3 / 51.6 56.5 / 58.4 57.2 / 59.8

Lifted 45.7 / 55.7 48.8 / 50.7 61.6 / 63.8

N-Pair 51.8 / 56.4 63.3 / 68.3 63.6 / 65.4

NRA (ours) 57.6 / 64.3 73.0 / 81.9 71.9 / 75.6

Recall@1 values for 64/512 dimensional FVs  
(Reproduced results)



Comparison to the State of the Art

 Method  Network Dim. CUB Cars196 SOP

 Margin  ResNet50 v2 128 63.6 79.6 72.7

 NRA (ours)  ResNet50 v2 128 64.5 79.9 75.3

 Angular  GoogLeNet 512 54.7 71.4 70.9

 A-BIER  GoogLeNet 512 57.5 82.0 74.2

 ABE-8  GoogLeNet (x8) 512 60.6 85.2 76.3

 NRA (ours)  GoogLeNet 512 64.3 82.1 75.6

Recall@1 values from different methods



Thank you very much!
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