

Deep Clustering based on a Mixture of Autoencoders

Shlomo E. Chazan, Sharon Gannot and Jacob Goldberger

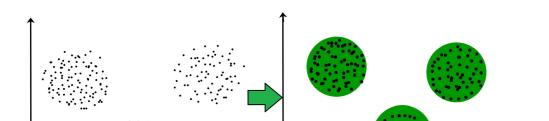
Faculty of Engineering, Bar-Ilan University Ramat-Gan, Israel

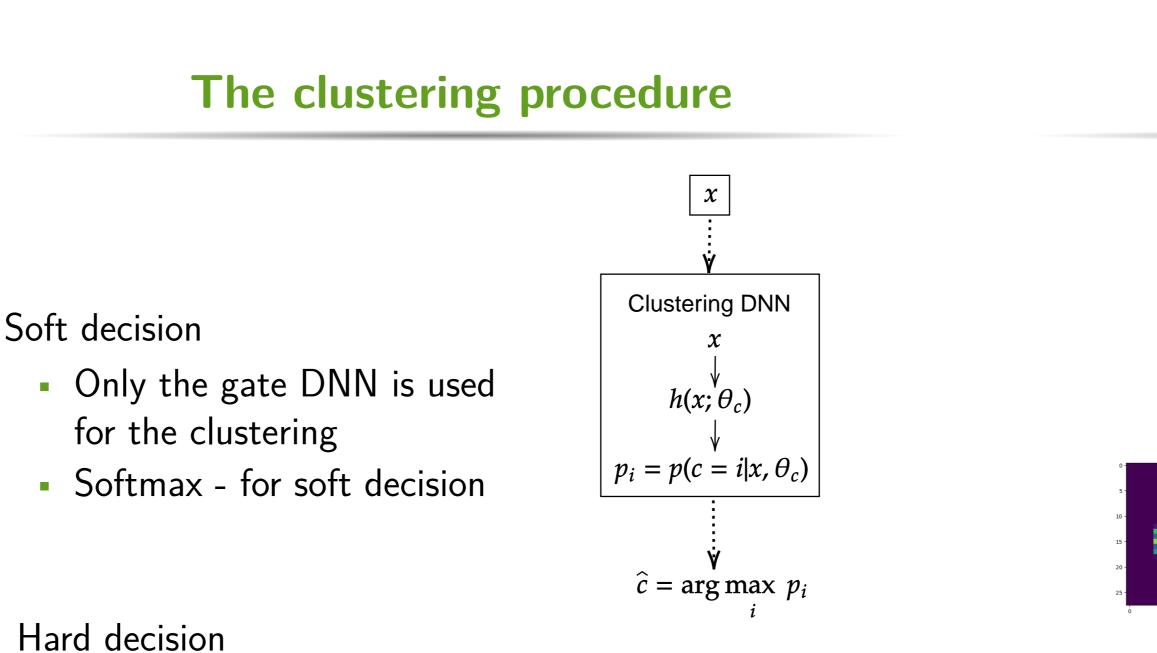
 $\{Shlomi.Chazan,\ Sharon.Gannot\ ,\ Jacob.Goldberger\}@biu.ac.il$

Main Contribution

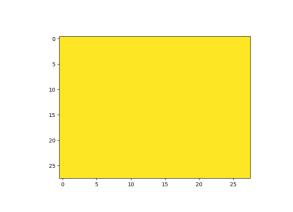
- We introduce Mixture of Deep Auto Encoders for the clustering task
- End-to-end deep learning based approach for clustering
- Each autoencoder is an expert in one cluster
- The gate network carries out the clustering itself

Clustering problem



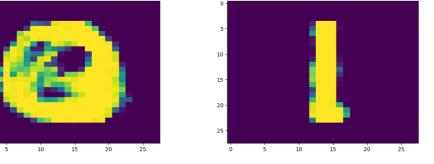


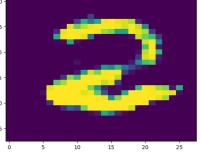
DAE expertise





(b) \hat{x}_1



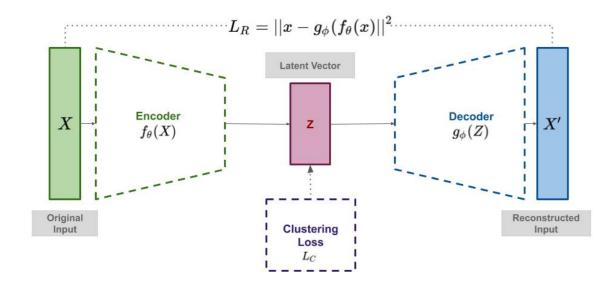


(a) \hat{x}_0

(c) \hat{x}_2

Deep-clustering approach

- Clustering high-dimensional datasets is hard since the inter-point distances become less informative in high-dimensional spaces
- Dimensionality reduction with **DNN**
- K-means is applied in the embedded space
- **X** Collapsing problem
- **X** Regularization is required



Deep-clustering drawbacks

- X The DNN is only used to find low-dimensional feature space
- X Requires regularization the embedded space information can be entirely irrelevant to the clustering process

 $\hat{c} = \arg \max_{i=1}^{k} p(c = i | x; \theta_c) = \arg \max_{i=1}^{k} (w_i^T h(x) + b_i).$

DAMIC algorithm

Goal: clustering $x_1, \ldots, x_n \in R^d$ into k clusters.

Network components:

A network that computes a soft clustering of the data point:

$$p(c = i | x; \theta_c) = \frac{\exp(w_i^T h(x) + b_i)}{\sum_{j=1}^k \exp(w_j^T h(x) + b_j)}$$

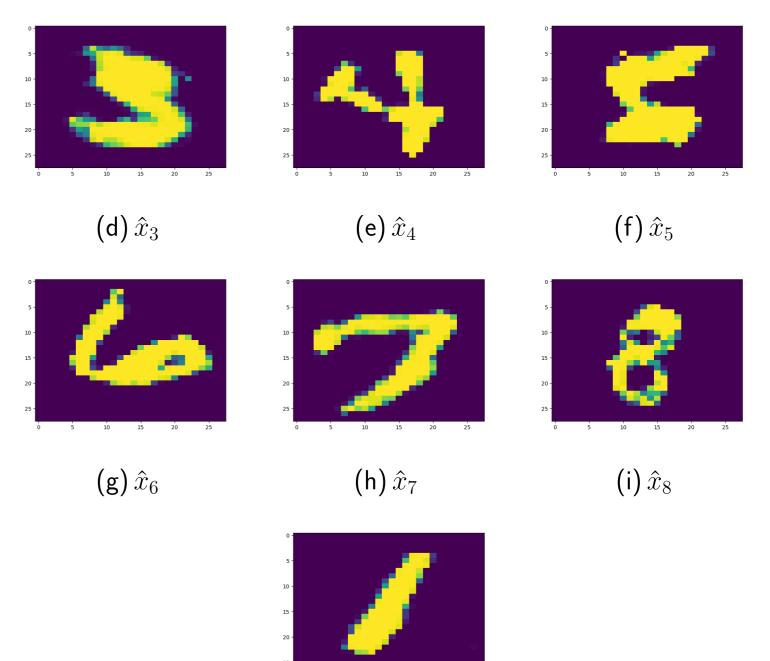
• A set of autoencoders (one for each cluster):

 $x \to \hat{x}_i = f_i(x; \theta_i), \ i = 1, \dots, k$

Pre-training:

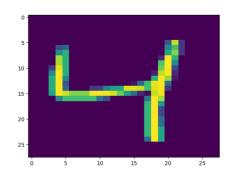
- Train a single autoencoder for the entire dataset
- Apply a k-means algorithm in the embedded space
- Use the k-means labels to train separate DAE for each cluster separately
- Use the k-means labels to train the clustering DNN

Joint Training:



(j) \hat{x}_9

Best reconstruction wins



Input

X Requires **fine-tuning** for each dataset

Clustering representation

K-means approach

- The K-means algorithm represents each cluster by a centroid
- The clustering is carried out by finding the centroid with the minimum distance from the data point

Our approach

- Each cluster is represented by an **autoencoder** that specializes in reconstructing objects belonging
 to that cluster
- The clustering is carried out by directing the input object to the most suitable autoencoder

Deep Autoencoder Mixture Clustering (DAMIC)

--

- clustering is obtained by minimizing the reconstruction error: $L(\theta_1, \ldots, \theta_k, \theta_c) =$

$$-\sum_{t=1}^{n} \log \left(\sum_{i=1}^{k} p(c_t = i | x_t; \theta_c) \right)$$
$$\cdot \exp\left(-\frac{1}{2} \cdot ||x_t - f_i(x_t; \theta_i)||^2\right)$$

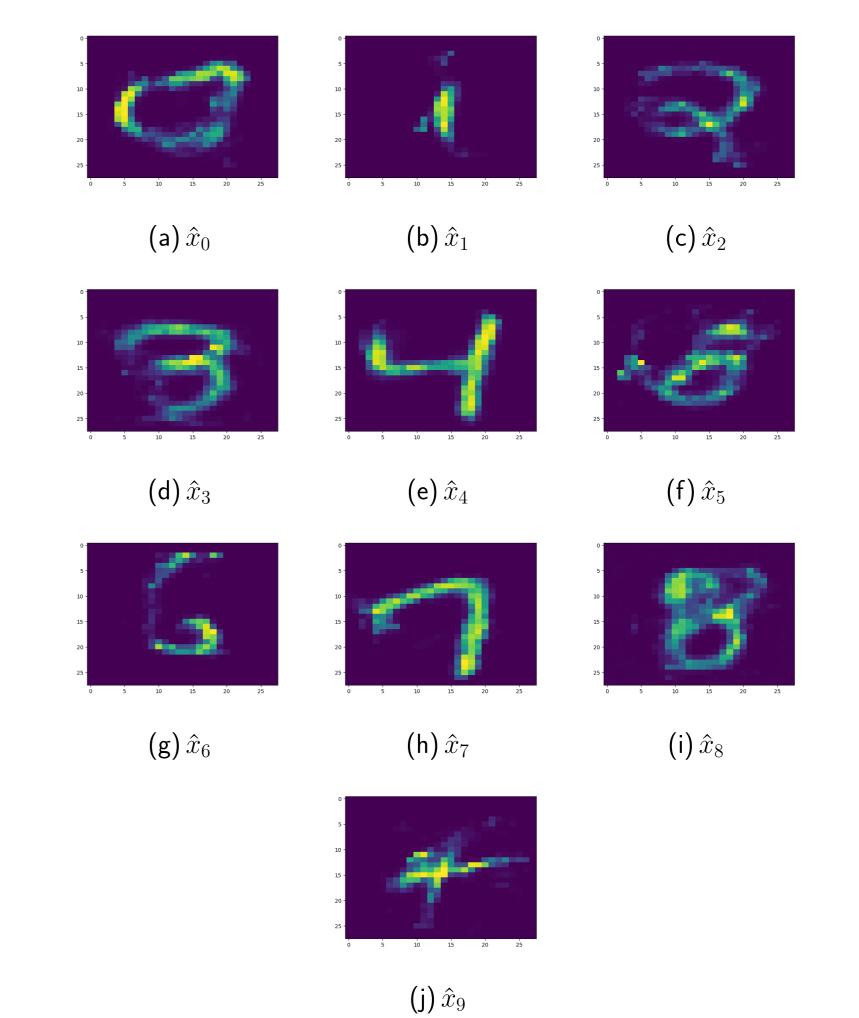
The final (hard) clustering is: $\hat{c}_t = \arg \max_{i=1}^k p(c_t = i | x_t; \theta_c), \ t = 1, ..., n.$

Training procedure

$$\frac{\partial L}{\partial \theta_c} = -\sum_{t=1}^n \sum_{i=1}^k w_{ti} \cdot \frac{\partial}{\partial \theta_c} \log p(c_t = i | x_t; \theta_c)$$

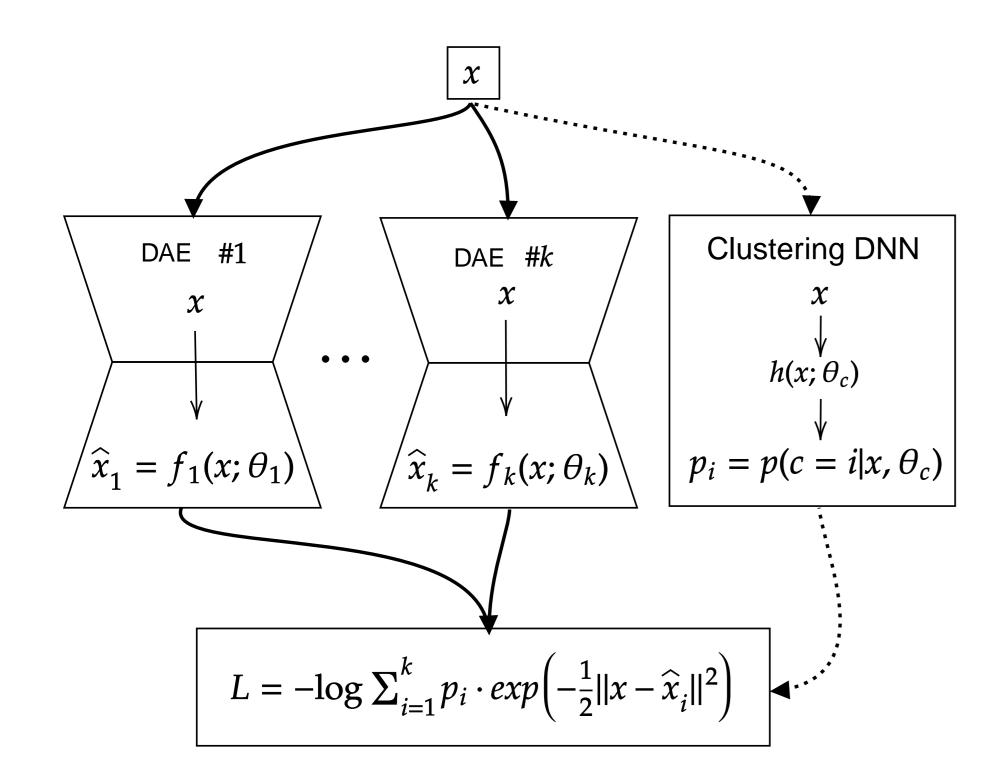
$$w_{ti} = \frac{p(c_t = i | x_t; \theta_c) \exp(-\frac{1}{2} \cdot ||x_t - f_i(x_t; \theta_i)||^2)}{\sum_{j=1}^k p(c_t = j | x_t; \theta_c) \exp(-\frac{1}{2} \cdot ||x_t - f_j(x_t; \theta_j)||^2)}$$

Clustering evaluation



 $p(c = 4|x; \theta_c) = 0.92 \gg p(c \neq 4|x; \theta_c) \approx 0$ Ablation study on the MNIST database

Method DAMIC Pre-training Joint-training KM



NMI Normalized mutual informationARI Adjusted rand indexACC Clustering accuracy

MNIST database								
Method	DAMIC	DCN	DAE+KM	DEC	KM			
NMI	0.87	0.81	0.74	0.80	0.50			
ARI	0.81	0.75	0.67	0.75	0.37			
ACC	0.89	0.83	0.80	0.84	0.53			

Fashion-MNIST database								
Method	DAMIC	DCN	DAE+KM	DEC	ΚM			
NMI	0.65	0.55	0.60	0.54	0.51			
ARI	0.49	0.42	0.45	0.40	0.37			
ACC	0.60	0.50	0.57	0.51	0.47			

NMI	0.87	0.74	0.71	0.50
ARI	0.81	0.67	0.53	0.37
ACC	0.89	0.80	0.60	0.53

Conclusions

- End-to-end DNN-based approach for clustering
- The clusters are represented by autoencoder networks
- Loss function does not suffer from the collapsing problem
- There is no need for regularization
- High performance (state-of-the-art in the Fashion-MNIST database)