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Introduction
•  Electroencephalography (EEG) is a multivariate time series whose labelling is expensive and 
   time-consuming.
•  However, large quantities of (unlabelled) EEG are available, e.g., sleep recordings.
•  How can we leverage unlabelled time series like EEG to improve generalization or study 
   physiological processes?
•  Self-supervision can be used to build a supervised learning task out of unlabelled data 
   [Doersch et al., 2015] [Hyvärinen & Morioka, 2019].
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Main result: Self-supervision can be used to learn physiologically 
relevant features from unlabelled EEG time series and improve 

classification performance on sleep staging.

•  We introduced two self-supervised tasks with a deep 
   learning architecture for learning features from raw EEG.
•  The learned features captured sleep- and age-related structure.
•  Classification performance improved as compared to pure supervision.
•  Next steps: What other pretext tasks would allow learning 
   complementary information? Can we improve the algorithmic efficiency 
   by using a smarter sampling methodology?
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Figure 1: UMAP visualization of 
features learned with self-supervison
(temporal shuffling) color-coded by sleep stage. 

Given two windows xt and xt', the model must predict whether the two windows 
are close or far away in time. The second approach - temporal shuffing (TS) - is 
similar, but introduces a third window (not shown).

Pretrain h(xt) on one of various 
representation learning tasks:1
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  See Fig. 3

* Temporal shuffling (TS)

Convolutional Autoencoder (AE)

Fully supervised

Random weights (Rand. init.)

h(xt) is a 4-layer CNN feature extractor [Chambon et 
al., 2018] with input size ∼(3840 x 3) and output size 
(100 x 1). The model is separately pretrained on 5 
different tasks, two of which (with *) are self-
supervised while the others are baselines.

Proposed approach 1: Relative Positioning (RP)
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Evaluate performance of learned 
features on sleep staging task.2

MASS [O'Reilly et al. 2014]
 62 subjects
 62 recordings
 256 Hz
 20 channels
Sleep EDF [Kemp et al. 2000]
 83 subjects
 153 recordings
 100 Hz
 2 channels
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While hyperparameters τpos and τneg (in mins) impact performance 
in both the self-supervised and sleep staging tasks, sleep staging 
performance remains comparable to the one of baseline methods.

The feature extractors trained with self-supervision outpeform other 
methods when fewer than ∼1,000 examples are available per class. 

Experiment 1:
Our self-supervised models learn representations of EEG 
signals and facilitate sleep staging.

Experiment 2:
Self-supervised models achieve much higher performance 
than supervised ones when few examples are available.

Experiment 3:
Learned features are physiologically 
relevant and are related to sleep 
macrostructure (Fig. 1) and age.

Figure 2: UMAP 
visualization of features 
learned with temporal 
shuffling on Sleep EDF, 
color-coded by age groups. 
See also Fig. 1 for sleep 
macrostucture color-coding.
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