Self-supervised representation learning from
electroencephalography signals

Hubert Banville?, Isabela Albuquerque®, Aapo Hyvarinen'”

Graeme Moffat?, Denis-Alexander Engemann', Alexandre Gramfort?

Y Inria, Université Paris-Saclay, Paris, France
2 InteraXon Inc., Toronto, Canada

3 INRS-EMT . Université du Quebec, Montréal Canada
* Dept. of CS and HIIT, University of Helsinki, Finland

Main result: Self-supervision can be used to learn physiologically
relevant features from unlabelled EEG time series and improve
classification performance on sleep staging.

Introduction

e Electroencephalography (EEG) is a multivariate time series whose labelling is expensive and

time-consuming.

e However, large quantities of (unlabelled) EEG are available, e.g., sleep recordings. R stoges

e How can we leverage unlabelled time series like EEG to improve generalization or study o ' o
physiological processes?’ Figure 1: UMAP visualization of ®

e Self-supervision can be used to build a supervised learning task out of unlabelled data features learned with self-supervison
[Doersch et al., 2015] [Hyvarinen & Morioka, 2019]. (temporal shuffling) color-coded by sleep stage.

Methods
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supervised while the others are baselines. sleep stage are close or far away in time. The second approach - temporal shuffing (TS) -
similar, but introduces a third window (not shown).
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Results

Experiment 1: Experiment 2: Experiment 3:
Our self-supervised models learn representations of EEG Self-supervised models achieve much higher performance Learned features are p glsmloglcally
signals and facilitate sleep staging. than supervised ones when few examples are available. relevant and are related to sleep
macrostructure (Fig. 1) and age.
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