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One approach : Linear Dimensionality Reduction 
(or low-rank matrix factorization)

 Dimensionality reduction

 Identification of dominant features (A)
 Filters redundancy and noise/errors
 Helps user interpretation

Each 𝑛 observation is approximated as a linear combination of 𝑟 basis elements 
with 𝒓 ≪ 𝒏 ∶

𝒚𝒊 ≃෍

𝒋=𝟏

𝒓

𝒂𝒋 𝒙𝒋,𝒊

In matrix form: 
𝒀 ≃ 𝑨 𝑿

𝑥𝑗,𝑖 ∈ ℝ

2

𝑌 ∈ ℝ𝑚×𝑛 , 𝐴 ∈ ℝ𝑚×𝑟 , 𝑋 ∈ ℝ𝑟×𝑛

 Compact representation

 Extraction of feature’s coefficients (X)
 Good for data analysis

Introduction



Nonnegative Matrix Factorization (NMF)

• Used for nonnegative data: images, amplitude spectrogram (sound), 
word frequencies (text), reflectance (hyper-spectral images), etc... 

• The basis elements (vectors 𝑎𝑗) as well as the coefficients (𝑥𝑗,𝑖) are 
imposed to be nonnegative: 

𝑎𝑗 ≥ 0 𝑎𝑛𝑑 𝑥𝑗,𝑖 ≥ 0 ∀𝑖, 𝑗.

3

Image processing,
[Buciu & al., 2008]

Music analysis,
[Kameoka & al., 2012]

Text mining,
[Lee & Seung, 1999]

Examples in etc…
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Linear mix

Introduction

Nonnegative Matrix Factorization: illustration

Basis signals
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Introduction

Ground truth signals

Reflectance signals from https://www.usgs.gov/labs/spec-lab/capabilities/spectral-library

Spessatine

Adulania

Olivine
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Introduction

Example of recovered signals, with noise level = 20 dB and 50 observations

Spessatine

Adulania

Olivine
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Introduction

Example of recovered signals, imposing them to be polynomials

Spessatine

Adulania

Olivine
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Introduction

Comparison of signals recovered by usual NMF and polynomial NMF

Usual NMF           (0,044)

Polynomial NMF (0,015)

Ground Truth 

Spessatine

Adulania

Olivine

.

.
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• An extension of NMF use polynomials in the factorization [Debals et al. 
2017, Hautecoeur & Glineur 2019, Zdunek 2014 (using splines)]

• Recovers smooth signals, and less sensitive to noise

Introduction

Each 𝑛 observation is approximated as a  nonnegative linear combination

of 𝑟 nonnegative polynomials with 𝒓 ≪ 𝒏 ∶

𝒚𝒊(𝒕) ≃෍

𝒋=𝟏

𝒓

𝒂𝒋(𝒕) 𝒙𝒋,𝒊 𝑎𝑗(𝑡) 𝒏𝒐𝒏𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆 𝒑𝒐𝒍𝒚𝒏𝒐𝒎𝒊𝒂𝒍,

𝑥𝑗,𝑖 ∈ ℝ+

NMF using polynomials (Polynomial-NMF)
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Usual NMF

Polynomial NMF

Ground Truth 

.
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Polynomial NMF

• Recovers smooth signals, and less sensitive to noise

• But can be slower, especially when analyzing low-scale data or using high-
degree polynomials

Introduction

P

P-HALS and LS are 2 methods for NMF using polynomials.
HALS is a method for usual NMF.

Evolution of CPU time with respect to 
degree of polynomials used in NMF

Evolution of CPU time with respect to the 
size of the dataset
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Polynomial NMF

Introduction

Can we accelerate these algorithms
and how? 

• Recovers smooth signals, and less sensitive to noise

• But can be slower, especially when analyzing low-scale data or using high-
degree polynomials
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Outline

Methods for Polynomial-NMF

 Improve polynomial projections

 Numerical results

Methods Polynomial projection ConclusionResultsIntroduction

12



LS algorithm [Debals & al., 2017]

Polynomial NMF: min
𝐴,𝑋≥0

𝑌 − 𝐴𝑋
𝐹

2
where A contains polynomials

Can be formulated as an (unconstrained) nonlinear least-squares problem in B,H  

min
𝐵,𝐻

𝑌 − 𝑓(𝐵,𝐻)
𝐹

2

Solved as a whole using least-squares solver. 

MethodsIntroduction

• + unconstrained formulation
• + attains good accuracy solutions
• - depends on solver efficiency
• - slow
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P-HALS algorithm [Hautecoeur & Glineur, 2019]

Polynomial NMF: min
𝐴,𝑋≥0

𝑌 − 𝐴𝑋
𝐹

2
where A contains polynomials

Let Π a Vandermonde-like matrix: 𝑎𝑖 𝑡 = Π𝑏, with 𝑏 the coefficient vector of size d+1.

The problem becomes

min
𝐵,𝑋

𝑌 − Π𝐵𝑋
𝐹

2

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑋 ≥ 0, 𝐵 ≥𝑝𝑜𝑙 0

Solved alternatively using hierarchical alternating least squares (HALS):

• Find optimal row 𝑋𝑖, with all other variable fixed

• Project 𝑋𝑖 on its feasible set   [repeat for all 𝑋𝑖]

• Find optimal column 𝐵𝑖 , with all other variable fixed

• Project 𝑩𝒊 on its feasible set [repeat for all 𝐵𝑖]

MethodsIntroduction
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Repeat till 
convergence



P-HALS algorithm

• Find optimal row 𝑋𝑖, with all other variable fixed

• Project 𝑋𝑖 on its feasible set   [repeat for all 𝑋𝑖]

• Find optimal column 𝐵𝑖, with all other variable fixed

• Project 𝑩𝒊 on its feasible set [repeat for all 𝐵𝑖]

All steps are straigthforward except the projection of 𝑩𝒊

MethodsIntroduction

Projection dominates total algorithmic cost 
(e.g. >97% for n=m=1000, d=12)

• + convex in B and X, potentially fast updates
• + guaranteed convergence to stationary point
• - update in B is costly (because of projection)
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Repeat till 
convergence



Objective

MethodsIntroduction

Accelerate the projection of 
polynomials on the nonnegative set

To improve the promising P-HALS algorithm. 
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Outline

Methods for Polynomial-NMF

 Improve polynomial projections

 Numerical results

Methods Polynomial projection ConclusionResultsIntroduction
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Projection over nonnegative polynomials using Sum-Of-Squares

Projection computed as Semidefinite optimization problem:

Suppose 𝑔 is a polynomial of degree d. 

• 𝑔(𝑡) is nonnegative iff it is Sum-Of-squares: 𝑔(𝑡) ≥ 0 ∀𝑡 ⇔ 𝑔 𝑡 = ∑𝑖 𝑓𝑖 𝑡
2

• 𝑔(𝑡) is nonnegative over [-1,1] iff 𝑔 𝑡 = 𝑓 𝑡 + 1 − 𝑡2 ℎ 𝑡 𝑓 𝑡 , ℎ 𝑡 ≥ 0 ∀𝑡

Can be expressed using
positive semidefinite cone

Methods Polynomial projectionIntroduction

To the best of our knowledge, only way to compute exact projection
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Projection: Given 𝑔(𝑡) find 𝑓 𝑡 the closest nonnegative polynomial to 𝑔 𝑡 .

3 ideas:

• Discretization (Discr): discretizes signals 

• Proximal (Prox): use known projection of a nearby polynomial

• Iterative heuristic (H1 and H2): uses iteratively polynomial curve fitting

Nonnegative
polynomials

Polynomials

𝒈(𝒕)

𝒇(𝒕)

Methods Polynomial projectionIntroduction

Three faster (approximate) projections
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Discretize signals and impose nonnegativity at the discretization points 
gives an (easier) linear optimization problem

Methods Polynomial projectionIntroduction

Discretization (Discr)
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Linear
optimization

problem



𝐼𝑓 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝒈 + 𝜹 = 𝒇, 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝒈 ≃ 𝒇 − 𝜹

But 𝒇 − 𝜹 not always nonnegative. 

Find maximal 𝛾 ∈ 0,1 such that 𝒇 − 𝛾𝜹 nonnegative.

As convex can use bisection search, using discretization to check nonnegativity. 

Methods Polynomial projectionIntroduction

Proximal projection (prox)
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Nonnegative
polynomials

Polynomials

𝒈 𝒕 + 𝜹(𝒕)

𝒇 𝒕 − 𝜹(𝒕)

𝒈 𝒕

𝜹𝒇(𝒕)

𝛿 = 10−2



• Discretize signals

• Replace the negative part by small value (thresholding)

• Perform polynomial curve fitting

Methods Polynomial projectionIntroduction

Iterative approaches (H1 and H2)

22

Discretization Thresholding Curve fitting



• Discretize signals

• Replace the negative part by small value (thresholding)

• Perform polynomial curve fitting iterativelly

Methods Polynomial projectionIntroduction

Iterative approaches (H1 and H2)
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Discretization Thresholding Curve fitting

Discretization
H1

H2

Modify thresholded function

(Similar for H2)



Outline

Methods for Polynomial-NMF

 Improve polynomial projections

 Numerical results

Methods Polynomial projection ConclusionResultsIntroduction
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Comparison of approximate projections

Projection of random polynomials with various degrees.
Assess both CPU time and accuracy (error) for each approximate projection technique 

• Discr: Precise, faster than Exact projection but still relatively slow 
(especially for low-degree polynomials)

• H1/2: Less precise but (much) faster than Exact projection (H1 better than H2)

• Prox: Fast and precise, but requires knowing projection of close polynomial

Methods Polynomial projection ResultsIntroduction
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r 5

# observations 100

# discretization
points 

414

Degree (polynomials) 12

• Test on real signals with synthetic mixing (ground truth is known)
• Generation:

• 𝐴 = 5 real reflectance spectra with 414 discretization points¹
• 𝑋 ~ 𝑁 0,1 , with negative values replaced by 0
• 𝑌 = 𝐴𝑋 + 𝑁𝑜 where 𝑁𝑜 = Gaussian additive noise with SNR = 20dB

• Parameters:

1. https://www.usgs.gov/labs/spec-lab/capabilities/spectral-library

• Evaluation with ෨𝐵, ෨𝑋 the obtained matrices:
• Residual = 𝑑𝑖𝑠𝑡(𝐴𝑋, Π ෨𝐵 ෨𝑋)
• 𝑆𝐼𝑅𝐴 = Signal to interference ratio (𝐴, ҧ𝐴 ) 

with ҧ𝐴 the best nonnegative linear combination
of Π ෨𝐵 to obtain 𝐴 (𝐴 ≃ ҧ𝐴 = Π ෨𝐵 𝑄, 𝑄 ∈ ℝ+)

• 𝑆𝐼𝑅𝑋 = Signal to interference ratio (𝑋, ത𝑋)
with ത𝑋 = 𝑄−1 ෨𝑋

The lower the residual the better, and the 
higher the SIR, the better. 

Methods Polynomial projection ResultsIntroduction

Numerical results for solving Polynomial NMF
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Testing algorithms for P-NMF 
with/without approximate projections

Methods Polynomial projection ResultsIntroduction

H1 and H2 perform quite well although they rely on much less precise projections
. 

Box Plot of the CPU time and accuracy (error) for different NMF algorithms.

Approximated 
P-HALS

Approximated 
P-HALS

Using an approximate but much accelerated projection leads to final 
solutions with accuracy similar to exact P-HALS
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Take home messages

Nonnegative Matrix Factorization given a nonnegative dataset recovers 
characteristic and interpretable features in an unsupervised way. 

 Improvable using polynomial signals in the factorization (LS and P-HALS)

P-HALS can be accelerated using approximate projection of polynomials, 
without loss of accuracy

Experimentally, the best heuristic is an iterative approach using polynomial 
curve fitting

Approximate projections are also effective on P-HALS using splines, using 
spline-specific heuristics. 

Look for a general heuristic for all functions. 
P-HALS converges to a stationary point

Look for convergence properties of approximated P-HALS

Analyze Polynomial projection ResultsIntroduction
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Thank you for your attention

Related work:
• LS: Otto Debals, Marc Van Barel, and Lieven De Lathauwer. "Nonnegative matrix
factorization using nonnegative polynomial approximations". IEEE Signal Processing Letters,
24(7):948–952, 2017.

Our work:
Cécile Hautecoeur and François Glineur, "Nonnegative matrix factorization with polynomial 
signals via hierarchical alternating least squares", in European Symposium on Artificial 
Neural Networks (ESANN), pages 125–130, 2019.

And its extention: "Nonnegative Matrix Factorization over continuous signals using
parametrizable functions" (Neurocomputing, accepted with minor revision)

Cécile Hautecoeur and François Glineur, "Accelerating Nonnegative Matrix Factorization
over polynomial signals with faster projections". In 2019 IEEE International Workshop on 
Machine Learning for Signal Processing (MLSP). IEEE, 2019.

Analyze Polynomial projection ConclusionResultsIntroduction
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Comment about the recovered signals

• NMF is insensitive to permutations and scaling of matrices A and X

• Until now, we observed the best nonnegative linear combination of 
the obtained signals to recover the original basis

• In general, F-HALS obtains less similar signals than the

other approaches when considering only

permutations and scaling
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F-HALS



Comparison

31

Method Penalty term Exact parametrization 
(𝒇 𝑩 , 𝑳𝑺)

Nonnegative functions
(𝒇 𝑩 ≥ 𝟎, HALS)

Pro • Simple
implementation

• Numerical stability
• Fast

• Superlinear
convergence

• Nonnegative
feature functions

• Convergence to 
stationary point

• Nonnegative feature 
functions

• Avoid discretization
• Extendable to other 

functions

Cons • Data-driven 
parameters 

• Non continuous 
features

• Nonlinear 
parametrization

• Slowest (even 
though good 
asymptotic 
complexity)

• Slower (due to 
projection, but can be 
accelerated ...)


