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Motivation 
• Thermal analysis of resonating micro-electromechanical systems (MEMS) 
• Characterise properties of drugs & materials in early-phase development 
Problem 
• Unknown global relation: resonance frequency vs. temperature over time  
• Low signal-to-noise-ratio for specific areas of resonator = excluded data 
• Filter + Annotate: tedious work and only fit high SNR spectra one-by-one  
Solution 
• Unsupervised tracking of peak height, position and shape 
• Bayesian generative model with  
• Warped Gaussian process priors to 
• Regularise towards non-negative & smooth 
• Impute peaks missing or disappearing in noise 
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We find that using warped GP priors can 
• Regularise parameter estimates to be smooth and non-negative 
• Impute peaks with low SNR allowing for higher inclusion rate 
• Lead to underestimation of peak shape Q and height F  
• Potentially support fast and efficient characterisation of drugs  
Future work on 
• Modelling shift in noise     over frequencies and time with GP prior  
• Correcting underestimation of Q by fitting phase shift slope  
• Metropolis-Hastings with Gibbs sampling for uncertainty estimates 
• Active learning to query expert for new annotations in training loop  

Summary

Schematic setup for obtaining data

(a) Micro-resonator data

(b) Synthetic data

Fig. 2. (a) Data from real experiment with micro-resonator. (b) Data generated from model with RBF kernel. Both data sets
use the same covariates, y, where the spatial (x and y) is represented by the euclidean distance to the attachment point of
the resonator in (a) as the 2nd to rightmost plots. In the rightmost plot we show the temperature (t) growing linearly with
the temporal (i) changes as seen in the leftmost labels. In the leftmost columns, the full spectrograms are presented with ⌦
estimates on top, using black circles for RBF kernel model, white triangles for diag. kernel model, red squares for initial ⌦ and
blue dots for true parameters. A subset of spectra are stacked and aligned in the 3 plots to the right of these with resonance peak
shapes (in black dotted lines) generated from Eq. 4 with the parameter estimates.
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Fig. 1. Schematic illustration of a typical experimental setup
measuring a resonators (samples) velocity response to the
actuators (left) vibration frequency with a laser Doppler vi-
brometer (LDV upper/central) transformed by the fast Fourier
transform (FFT) into a magnitude spectrum (upper right plot)
at every new temperature (lower right plot) reached by the
heat source (lower).

their possible values, allowing consistent tracking of peaks
like [11] attempts for NMR spectra varying over time. For
an ideal and clean driven damped resonator, the governing
function can be described by second order differential equa-
tion [12]. As this is a simplification of the actual system,
including informative prior constraints on the parameters will
help solving the problem and allow leaving unrelated noise
signals and other modes of variation in the residuals.

2. METHODS

2.1. Generative model

The observed data can be recorded in the form of a matrix
Z 2 RN⇥M , where the i’th row corresponds to a measured
spectrum and the j’th column to a frequency. The frequencies
are equally spaced within some predefined range !1, . . . ,!M .
In addition to this, for each measurement the temperature ti,
and spatial location of the measurement position xi, yi is also
recorded.

We model the observed spectra using a resonance peak
model f(!, ✓) corrupted by additive noise ✏,

zi,j = f(!j , ✓i) + ✏i,j . (1)

The peak model depends on the frequency ! as well as a set
of parameters ✓ which govern the location, amplitude, and
shape of the resonance peak. The additive noise is assumed
independent and identically distributed over observations and
frequencies. With a Gaussian noise model, the likelihood can
be written as

p(Z|⇥) =
NY

i=1

MY

j=1

N (zi,j ; f(!j , ✓i),�
2
✏
), (2)

where the parameters of the peak model for each observation
are collected in ⇥ = {✓1, . . . , ✓N}, and �2

✏
denotes the vari-

ance of the noise.
We assume that the resonance peak parameters are cor-

related, such that the location, amplitude and shape of res-
onance peaks are similar for observations with similar tem-
perature and spatial location. We formulate this correlation
through a prior on the parameters p(⇥). Combining this
prior with the likelihood, we estimate the model parameters
by maximizing the posterior distribution p(⇥|Z), computing
the maximum a posteriori (MAP) estimate,

⇥̂ = argmax
⇥

p(Z|⇥)p(⇥). (3)

2.2. Resonance peak model

In the microresonator experiments, the governing function is
derived from the solution, z(t) = z0 exp{i!t}, to the ordi-
nary differential equation that governs a driven damped vi-
bration on a linear resonator [12]. We use the magnitude as
our frequency response function,
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The parameters of this model are ✓i = {Fi,⌦i, Qi}, where
Fi is the amplitude, ⌦i is the resonance frequency, and Qi is
the quality factor which describes the shape of the peak.

2.3. Prior distributions

For the amplitudes F = {F1, . . . , FN}, resonance fre-
quencies ⌦ = {⌦1, . . . ,⌦N}, and quality factors Q =
{Q1, . . . , QN} we use independent prior distributions of the
same form, namely warped Gaussian process (GP) priors. For
each of the three parameter sequences, the GP allows us to
specify a covariance function that defines the degree of corre-
lation between the observations dependent on the observation
index, temperature, and spatial coordinates. Specifically we
use a radial basis function (RBF) for covariance on the fol-
lowing form
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where � = {i, t, x, y} are the covariates, and �i = (i � i0)
is shorthand for the difference between i and i0 (and similarly
for t, x, and y). The signal variance is here �2

f
= 1 and the

noise variance term is omitted, since variance is introduced,
when mapping the GP to the prior distribution. The length
scale parameters �i, �t, �x, and �y control the degree of cor-
relation with respect to the observation index or time, tem-
perature, and spatial covariates respectively. The covariance
function thus describes the covariance between parameters at

GPP w. RBF kernel GPP w. diag. kernel

RMSE MAE RMSE MAE

Ampl. (F̂ ) 0.113 0.340
Loc. (⌦̂) 0.0312 2.76
Qual. (Q̂) 0.398 0.458

Table 1. For synthetic data we can evaluate the performance
in root mean squared error (RMSE), negative log-likelihood
and negative log-posterior on MAP estimates from the model
with RBF kernel and the model with diagonal kernel.

2.5. Optimisation

3. EXPERIMENTS

3.1. Validation on synthetic data

3.2. Crystaline drug

We use data from a real experiment using a laser-Doppler
vibrometer to measure the frequency response of a drug in
crystal form, which is shown in figure 1. Here the control
variables are seen as the temperature profile and spatial coor-
dinates of the measurement points on the surface of the crys-
tal.

• Synthetic data

– From GP model - test w. wrong and right priors

• Strings

• Crystals

3.3. Crystal data

The data used from a real experiment with crystalline drug
can be seen in figure 1. The experiment consists in a set of
multiple measurements at different locations on the analyite
over a period of time. In this particular experiment, the ana-
lyte is subject to a change in temperature. Taking these setup
characteristics into account, it can be observed a particular
spectra structure based on time, the temperature profile and
the physical location of the points.

For the initial points used in the modelling, an approxi-
mation is provided by a user by means of a user interface.

4. RESULTS

• Figures for comparisons

• Tables for comparisons
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Fig. 1. Schematic illustration of a typical experimental setup
measuring a resonators (samples) velocity response to the
actuators (left) vibration frequency with a laser Doppler vi-
brometer (LDV upper/central) transformed by the fast Fourier
transform (FFT) into a magnitude spectrum (upper right plot)
at every new temperature (lower right plot) reached by the
heat source (lower).

their possible values, allowing consistent tracking of peaks
like [11] attempts for NMR spectra varying over time. For
an ideal and clean driven damped resonator, the governing
function can be described by second order differential equa-
tion [12]. As this is a simplification of the actual system,
including informative prior constraints on the parameters will
help solving the problem and allow leaving unrelated noise
signals and other modes of variation in the residuals.

2. METHODS

2.1. Generative model

The observed data can be recorded in the form of a matrix
Z 2 RN⇥M , where the i’th row corresponds to a measured
spectrum and the j’th column to a frequency. The frequencies
are equally spaced within some predefined range !1, . . . ,!M .
In addition to this, for each measurement the temperature ti,
and spatial location of the measurement position xi, yi is also
recorded.

We model the observed spectra using a resonance peak
model f(!, ✓) corrupted by additive noise ✏,

zi,j = f(!j , ✓i) + ✏i,j . (1)

The peak model depends on the frequency ! as well as a set
of parameters ✓ which govern the location, amplitude, and
shape of the resonance peak. The additive noise is assumed
independent and identically distributed over observations and
frequencies. With a Gaussian noise model, the likelihood can
be written as

p(Z|⇥) =
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where the parameters of the peak model for each observation
are collected in ⇥ = {✓1, . . . , ✓N}, and �2

✏
denotes the vari-

ance of the noise.
We assume that the resonance peak parameters are cor-

related, such that the location, amplitude and shape of res-
onance peaks are similar for observations with similar tem-
perature and spatial location. We formulate this correlation
through a prior on the parameters p(⇥). Combining this
prior with the likelihood, we estimate the model parameters
by maximizing the posterior distribution p(⇥|Z), computing
the maximum a posteriori (MAP) estimate,

⇥̂ = argmax
⇥

p(Z|⇥)p(⇥). (3)

2.2. Resonance peak model

In the microresonator experiments, the governing function is
derived from the solution, z(t) = z0 exp{i!t}, to the ordi-
nary differential equation that governs a driven damped vi-
bration on a linear resonator [12]. We use the magnitude as
our frequency response function,
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The parameters of this model are ✓i = {Fi,⌦i, Qi}, where
Fi is the amplitude, ⌦i is the resonance frequency, and Qi is
the quality factor which describes the shape of the peak.

2.3. Prior distributions

For the amplitudes F = {F1, . . . , FN}, resonance fre-
quencies ⌦ = {⌦1, . . . ,⌦N}, and quality factors Q =
{Q1, . . . , QN} we use independent prior distributions of the
same form, namely warped Gaussian process (GP) priors. For
each of the three parameter sequences, the GP allows us to
specify a covariance function that defines the degree of corre-
lation between the observations dependent on the observation
index, temperature, and spatial coordinates. Specifically we
use a radial basis function (RBF) for covariance on the fol-
lowing form
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where � = {i, t, x, y} are the covariates, and �i = (i � i0)
is shorthand for the difference between i and i0 (and similarly
for t, x, and y). The signal variance is here �2

f
= 1 and the

noise variance term is omitted, since variance is introduced,
when mapping the GP to the prior distribution. The length
scale parameters �i, �t, �x, and �y control the degree of cor-
relation with respect to the observation index or time, tem-
perature, and spatial covariates respectively. The covariance
function thus describes the covariance between parameters at
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Gaussian noise model over j´th frequency and i´th spectrum

GPP w. RBF kernel GPP w. diag. kernel

RMSE MAE RMSE MAE

Ampl. (F̂ ) 0.113 0.340
Loc. (⌦̂) 0.0312 2.76
Qual. (Q̂) 0.398 0.458

Table 1. For synthetic data we can evaluate the performance
in root mean squared error (RMSE), negative log-likelihood
and negative log-posterior on MAP estimates from the model
with RBF kernel and the model with diagonal kernel.
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3.2. Crystaline drug

We use data from a real experiment using a laser-Doppler
vibrometer to measure the frequency response of a drug in
crystal form, which is shown in figure 1. Here the control
variables are seen as the temperature profile and spatial coor-
dinates of the measurement points on the surface of the crys-
tal.
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3.3. Crystal data

The data used from a real experiment with crystalline drug
can be seen in figure 1. The experiment consists in a set of
multiple measurements at different locations on the analyite
over a period of time. In this particular experiment, the ana-
lyte is subject to a change in temperature. Taking these setup
characteristics into account, it can be observed a particular
spectra structure based on time, the temperature profile and
the physical location of the points.

For the initial points used in the modelling, an approxi-
mation is provided by a user by means of a user interface.

4. RESULTS

• Figures for comparisons

• Tables for comparisons

hk ⇠ GP(0,⌃k) (9)

✏i,j ⇠ N (0,�✏) (10)

p(⇥) =
LY

k=1

p(Hk) (11)

zi,j = f(!j , ✓i) + ✏i,j , , ✓i = {Fi,⌦i, Qi} (12)

⇥ = {✓i}Ni=1 = {Hk}L=3
k=1 = {F ,⌦,Q} (13)

p(⇥) =
LY

k=1

pHk(Hk) = pF (F )p⌦(⌦)pQ(Q) (14)

⇥ = g(h(⌘)) =
�
`�1
k

(hk(⌘k
))
 L
k=1

(15)

hk(⌘k
) = Ck⌘k

, ⌘
k
⇠ N (0, I), ⌘ = {⌘

k
}L
k=1, (16)

`�1
k

(hk) = P�1
Hk

(Phk(hk)) , (17)

⌘
k
2 RN (18)

⌃k = CkC
>
k
, (19)

⌘̂ = argmax
⌘

 
log p(Z|g(h(⌘))) +

LX

k=1

⌘
>
k
⌘
k

!
(20)

⇥̂ = g(h(⌘̂)) (21)

Maximize Posterior 
Parameter estimates for all i 
Solved in log and GP prior domain  

0 50 100 150 200
Time [s]

25

30

35

40

45

Te
m

pe
ra

tu
re

 [°
C

]

45 50 55
Frequency,  [kHz]

M
ag

ni
tu

de

Actuator

LDV |FFT|

Magnitude 
spectra

Sample

oC

Heat

Fig. 1. Schematic illustration of a typical experimental setup
measuring a resonators (samples) velocity response to the
actuators (left) vibration frequency with a laser Doppler vi-
brometer (LDV upper/central) transformed by the fast Fourier
transform (FFT) into a magnitude spectrum (upper right plot)
at every new temperature (lower right plot) reached by the
heat source (lower).

their possible values, allowing consistent tracking of peaks
like [11] attempts for NMR spectra varying over time. For
an ideal and clean driven damped resonator, the governing
function can be described by second order differential equa-
tion [12]. As this is a simplification of the actual system,
including informative prior constraints on the parameters will
help solving the problem and allow leaving unrelated noise
signals and other modes of variation in the residuals.

2. METHODS

2.1. Generative model

The observed data can be recorded in the form of a matrix
Z 2 RN⇥M , where the i’th row corresponds to a measured
spectrum and the j’th column to a frequency. The frequencies
are equally spaced within some predefined range !1, . . . ,!M .
In addition to this, for each measurement the temperature ti,
and spatial location of the measurement position xi, yi is also
recorded.

We model the observed spectra using a resonance peak
model f(!, ✓) corrupted by additive noise ✏,

zi,j = f(!j , ✓i) + ✏i,j . (1)

The peak model depends on the frequency ! as well as a set
of parameters ✓ which govern the location, amplitude, and
shape of the resonance peak. The additive noise is assumed
independent and identically distributed over observations and
frequencies. With a Gaussian noise model, the likelihood can
be written as

p(Z|⇥) =
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where the parameters of the peak model for each observation
are collected in ⇥ = {✓1, . . . , ✓N}, and �2

✏
denotes the vari-

ance of the noise.
We assume that the resonance peak parameters are cor-

related, such that the location, amplitude and shape of res-
onance peaks are similar for observations with similar tem-
perature and spatial location. We formulate this correlation
through a prior on the parameters p(⇥). Combining this
prior with the likelihood, we estimate the model parameters
by maximizing the posterior distribution p(⇥|Z), computing
the maximum a posteriori (MAP) estimate,

⇥̂ = argmax
⇥

p(Z|⇥)p(⇥). (3)

2.2. Resonance peak model

In the microresonator experiments, the governing function is
derived from the solution, z(t) = z0 exp{i!t}, to the ordi-
nary differential equation that governs a driven damped vi-
bration on a linear resonator [12]. We use the magnitude as
our frequency response function,
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The parameters of this model are ✓i = {Fi,⌦i, Qi}, where
Fi is the amplitude, ⌦i is the resonance frequency, and Qi is
the quality factor which describes the shape of the peak.

2.3. Prior distributions

For the amplitudes F = {F1, . . . , FN}, resonance fre-
quencies ⌦ = {⌦1, . . . ,⌦N}, and quality factors Q =
{Q1, . . . , QN} we use independent prior distributions of the
same form, namely warped Gaussian process (GP) priors. For
each of the three parameter sequences, the GP allows us to
specify a covariance function that defines the degree of corre-
lation between the observations dependent on the observation
index, temperature, and spatial coordinates. Specifically we
use a radial basis function (RBF) for covariance on the fol-
lowing form
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where � = {i, t, x, y} are the covariates, and �i = (i � i0)
is shorthand for the difference between i and i0 (and similarly
for t, x, and y). The signal variance is here �2

f
= 1 and the

noise variance term is omitted, since variance is introduced,
when mapping the GP to the prior distribution. The length
scale parameters �i, �t, �x, and �y control the degree of cor-
relation with respect to the observation index or time, tem-
perature, and spatial covariates respectively. The covariance
function thus describes the covariance between parameters at
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RMSE MAE RMSE MAE

Ampl. (F̂ ) 0.113 0.340
Loc. (⌦̂) 0.0312 2.76
Qual. (Q̂) 0.398 0.458

Table 1. For synthetic data we can evaluate the performance
in root mean squared error (RMSE), negative log-likelihood
and negative log-posterior on MAP estimates from the model
with RBF kernel and the model with diagonal kernel.
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We use data from a real experiment using a laser-Doppler
vibrometer to measure the frequency response of a drug in
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dinates of the measurement points on the surface of the crys-
tal.
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3.3. Crystal data

The data used from a real experiment with crystalline drug
can be seen in figure 1. The experiment consists in a set of
multiple measurements at different locations on the analyite
over a period of time. In this particular experiment, the ana-
lyte is subject to a change in temperature. Taking these setup
characteristics into account, it can be observed a particular
spectra structure based on time, the temperature profile and
the physical location of the points.

For the initial points used in the modelling, an approxi-
mation is provided by a user by means of a user interface.
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crystal form, which is shown in figure 1. Here the control
variables are seen as the temperature profile and spatial coor-
dinates of the measurement points on the surface of the crys-
tal.

• Synthetic data

– From GP model - test w. wrong and right priors

• Strings

• Crystals

3.3. Crystal data

The data used from a real experiment with crystalline drug
can be seen in figure 1. The experiment consists in a set of
multiple measurements at different locations on the analyite
over a period of time. In this particular experiment, the ana-
lyte is subject to a change in temperature. Taking these setup
characteristics into account, it can be observed a particular
spectra structure based on time, the temperature profile and
the physical location of the points.

For the initial points used in the modelling, an approxi-
mation is provided by a user by means of a user interface.

4. RESULTS

• Figures for comparisons

• Tables for comparisons
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two different observation indices i and i0, and the covariance
between each pair of observations can be collected in a matrix
⌃ 2 RN⇥N .

Since the resonance peak parameters F , ⌦, and Q are non-
negative by definition, an unconstrained Gaussian process is
not directly suited as a prior distribution. To handle this con-
straint and provide a large degree of flexibility in the prior
specification, we use a warped Gaussian process, in which
the parameter we model is related to the GP prior through a
parameterised link function. As the treatment is identical for
the three model parameters, in the following we will use H

to denote one of the three parameters. We thus have the re-
lation that `(H) = h is distributed according to a GP with
zero mean and covariance as described above. Here `(·) is a
strictly increasing link function which is chosen such that its
inverse `�1(·) maps the Normal distribution onto a suitable
truncated Normal distribution on the non-negative real num-
bers.

In particular we use the following inverse link function [9]
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where Ph(·) is the cumulative distribution function (CDF) of
the standard Gaussian distribution [13]
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. Since the marginal distri-
butions of h are standard Normal, the standard Normal CDF
maps h onto a distribution with uniform marginals, and from
here the inverse CDF of the truncated Normal maps this onto
a distribution with truncated Normal marginals. The trun-
cated Normal distribution has parameters a and b which con-
trol the upper and lower truncation points as well as µ and
� which control the location and scale of the distribution.
Thus, this allows us to define the covariance of H through
the GP model while enforcing desired marginal distributions
through the link function. We use the change of variables
trick, h = C

T

h
⌘, from [9], where Ch is the matrix square

root (Cholesky decomposition) of the GP covariance matrix,
⌃h = ChC

T

h
. This trick ensures a simplification of the opti-

misation in a space of standard i.i.d. ⌘.

2.4. Optimisation

The MAP estimates are computed through standard numerical
gradient constrained optimisation using fmincon in MAT-
LAB. To get a warm start we set our initial F to the maxi-
mum magnitudes in each spectra, ⌦ to the corresponding fre-
quencies and all Q to 300 based on the usual Q-values of

our resonator. The optimisation is run as a block coordinate
ascent, where we maximize the log-posterior objective with
respect to ⌦ and F [ Q separately in alternating order until
convergence. Convergence thresholds are set with an objec-
tive function tolerance of 0.001 and a parameter step tolerance
of 0.001, with a max of 5 · 107 function evaluations and 20
iterations per block.

3. EXPERIMENTS

All experiments are carried out using the model described
above with the governing resonance peak function in Eq. 4.
To assess the importance of modeling the correlation between
observations, we test the model with either the radial basis
function (RBF) for the kernel (referred to as GPP w. RBF

kernel) or a diagonal kernel for the covariance in the GP (re-
ferred to as GPP w. diag. kernel). With a diagonal kernel, the
model of covariance is effectively disabled, corresponding to
a standard Bayesian peak fitting model run on each observa-
tion independently.

3.1. Micro-resonator

To demonstrate the model on realistic data under non-ideal
conditions, we apply it to a data set from an experiment with
a micro-resonator, that has been manually annotated by the
experimenter, so we can validate using the annotations as
ground truth.

The data stems from an experiment using a laser-Doppler
vibrometer (LDV) to measure the frequency response of a
micro-resonator, which is shown in Fig. 2. Here the co-
variates are seen as the temperature profile and spatial co-
ordinates of the measurement points on the surface of the
resonator. While the temperature is turned up and down, the
LDV scans across the surface of the resonator, here 67 times
on a grid of 45 points leading to N = 67 ⇥ 45 = 3015
measurements. After filtering out the measurements with
low signal-to-noise-ratio (SNR) and poor conditions for the
annotator, we end up with 65 spectra and corresponding pa-
rameters manually annotated and fitted by a domain expert
among the authors. To test our model’s ability to interpo-
late parameters in regions with low SNR, we reintroduce 11
of the left out spectra with lowest SNR, which has indices i =
[165, 196, 617, 680, 685, 1558, 1591, 2009, 2025, 2875, 2920].
None of these has annotated parameters provided and are not
used for comparison in Tab. 1.

3.2. Choice of prior parameters

The model specification and parameter values are decided
upon given a mix of prior knowledge and statistical mea-
sures easily obtained from the data. The noise is modelled
through the normal likelihood, with �✏ = 2.969 · 10�5 be-
ing the average standard deviation of spectral regions away
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a micro-resonator, that has been manually annotated by the
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ground truth.
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vibrometer (LDV) to measure the frequency response of a
micro-resonator, which is shown in Fig. 2. Here the co-
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ordinates of the measurement points on the surface of the
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LDV scans across the surface of the resonator, here 67 times
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annotator, we end up with 65 spectra and corresponding pa-
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of the left out spectra with lowest SNR, which has indices i =
[165, 196, 617, 680, 685, 1558, 1591, 2009, 2025, 2875, 2920].
None of these has annotated parameters provided and are not
used for comparison in Tab. 1.
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The model specification and parameter values are decided
upon given a mix of prior knowledge and statistical mea-
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Fig. 1. Schematic illustration of a typical experimental setup
measuring a resonators (samples) velocity response to the
actuators (left) vibration frequency with a laser Doppler vi-
brometer (LDV upper/central) transformed by the fast Fourier
transform (FFT) into a magnitude spectrum (upper right plot)
at every new temperature (lower right plot) reached by the
heat source (lower).

their possible values, allowing consistent tracking of peaks
like [11] attempts for NMR spectra varying over time. For
an ideal and clean driven damped resonator, the governing
function can be described by second order differential equa-
tion [12]. As this is a simplification of the actual system,
including informative prior constraints on the parameters will
help solving the problem and allow leaving unrelated noise
signals and other modes of variation in the residuals.

2. METHODS

2.1. Generative model

The observed data can be recorded in the form of a matrix
Z 2 RN⇥M , where the i’th row corresponds to a measured
spectrum and the j’th column to a frequency. The frequencies
are equally spaced within some predefined range !1, . . . ,!M .
In addition to this, for each measurement the temperature ti,
and spatial location of the measurement position xi, yi is also
recorded.

We model the observed spectra using a resonance peak
model f(!, ✓) corrupted by additive noise ✏,

zi,j = f(!j , ✓i) + ✏i,j . (1)

The peak model depends on the frequency ! as well as a set
of parameters ✓ which govern the location, amplitude, and
shape of the resonance peak. The additive noise is assumed
independent and identically distributed over observations and
frequencies. With a Gaussian noise model, the likelihood can
be written as

p(Z|⇥) =
NY

i=1

MY

j=1

N (zi,j ; f(!j , ✓i),�
2
✏
), (2)

where the parameters of the peak model for each observation
are collected in ⇥ = {✓1, . . . , ✓N}, and �2

✏
denotes the vari-

ance of the noise.
We assume that the resonance peak parameters are cor-

related, such that the location, amplitude and shape of res-
onance peaks are similar for observations with similar tem-
perature and spatial location. We formulate this correlation
through a prior on the parameters p(⇥). Combining this
prior with the likelihood, we estimate the model parameters
by maximizing the posterior distribution p(⇥|Z), computing
the maximum a posteriori (MAP) estimate,

⇥̂ = argmax
⇥

p(Z|⇥)p(⇥). (3)

2.2. Resonance peak model

In the microresonator experiments, the governing function is
derived from the solution, z(t) = z0 exp{i!t}, to the ordi-
nary differential equation that governs a driven damped vi-
bration on a linear resonator [12]. We use the magnitude as
our frequency response function,
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Fi⌦2
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The parameters of this model are ✓i = {Fi,⌦i, Qi}, where
Fi is the amplitude, ⌦i is the resonance frequency, and Qi is
the quality factor which describes the shape of the peak.

2.3. Prior distributions

For the amplitudes F = {F1, . . . , FN}, resonance fre-
quencies ⌦ = {⌦1, . . . ,⌦N}, and quality factors Q =
{Q1, . . . , QN} we use independent prior distributions of the
same form, namely warped Gaussian process (GP) priors. For
each of the three parameter sequences, the GP allows us to
specify a covariance function that defines the degree of corre-
lation between the observations dependent on the observation
index, temperature, and spatial coordinates. Specifically we
use a radial basis function (RBF) for covariance on the fol-
lowing form

c(�,�0) = exp
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where � = {i, t, x, y} are the covariates, and �i = (i � i0)
is shorthand for the difference between i and i0 (and similarly
for t, x, and y). The signal variance is here �2

f
= 1 and the

noise variance term is omitted, since variance is introduced,
when mapping the GP to the prior distribution. The length
scale parameters �i, �t, �x, and �y control the degree of cor-
relation with respect to the observation index or time, tem-
perature, and spatial covariates respectively. The covariance
function thus describes the covariance between parameters at

0 50 100 150 200
Time [s]

25

30

35

40

45

Te
m

pe
ra

tu
re

 [°
C

]

45 50 55
Frequency,  [kHz]

M
ag

ni
tu

de

Actuator

LDV |FFT|

Magnitude 
spectra

Sample

oC

Heat

Fig. 1. Schematic illustration of a typical experimental setup
measuring a resonators (samples) velocity response to the
actuators (left) vibration frequency with a laser Doppler vi-
brometer (LDV upper/central) transformed by the fast Fourier
transform (FFT) into a magnitude spectrum (upper right plot)
at every new temperature (lower right plot) reached by the
heat source (lower).

their possible values, allowing consistent tracking of peaks
like [11] attempts for NMR spectra varying over time. For
an ideal and clean driven damped resonator, the governing
function can be described by second order differential equa-
tion [12]. As this is a simplification of the actual system,
including informative prior constraints on the parameters will
help solving the problem and allow leaving unrelated noise
signals and other modes of variation in the residuals.

2. METHODS

2.1. Generative model

The observed data can be recorded in the form of a matrix
Z 2 RN⇥M , where the i’th row corresponds to a measured
spectrum and the j’th column to a frequency. The frequencies
are equally spaced within some predefined range !1, . . . ,!M .
In addition to this, for each measurement the temperature ti,
and spatial location of the measurement position xi, yi is also
recorded.

We model the observed spectra using a resonance peak
model f(!, ✓) corrupted by additive noise ✏,

zi,j = f(!j , ✓i) + ✏i,j . (1)

The peak model depends on the frequency ! as well as a set
of parameters ✓ which govern the location, amplitude, and
shape of the resonance peak. The additive noise is assumed
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Fi is the amplitude, ⌦i is the resonance frequency, and Qi is
the quality factor which describes the shape of the peak.

2.3. Prior distributions

For the amplitudes F = {F1, . . . , FN}, resonance fre-
quencies ⌦ = {⌦1, . . . ,⌦N}, and quality factors Q =
{Q1, . . . , QN} we use independent prior distributions of the
same form, namely warped Gaussian process (GP) priors. For
each of the three parameter sequences, the GP allows us to
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Fig. 1. Schematic illustration of a typical experimental setup
measuring a resonators (samples) velocity response to the
actuators (left) vibration frequency with a laser Doppler vi-
brometer (LDV upper/central) transformed by the fast Fourier
transform (FFT) into a magnitude spectrum (upper right plot)
at every new temperature (lower right plot) reached by the
heat source (lower).

their possible values, allowing consistent tracking of peaks
like [11] attempts for NMR spectra varying over time. For
an ideal and clean driven damped resonator, the governing
function can be described by second order differential equa-
tion [12]. As this is a simplification of the actual system,
including informative prior constraints on the parameters will
help solving the problem and allow leaving unrelated noise
signals and other modes of variation in the residuals.

2. METHODS

2.1. Generative model

The observed data can be recorded in the form of a matrix
Z 2 RN⇥M , where the i’th row corresponds to a measured
spectrum and the j’th column to a frequency. The frequencies
are equally spaced within some predefined range !1, . . . ,!M .
In addition to this, for each measurement the temperature ti,
and spatial location of the measurement position xi, yi is also
recorded.

We model the observed spectra using a resonance peak
model f(!, ✓) corrupted by additive noise ✏,

zi,j = f(!j , ✓i) + ✏i,j . (1)

The peak model depends on the frequency ! as well as a set
of parameters ✓ which govern the location, amplitude, and
shape of the resonance peak. The additive noise is assumed
independent and identically distributed over observations and
frequencies. With a Gaussian noise model, the likelihood can
be written as

p(Z|⇥) =
NY

i=1

MY

j=1

N (zi,j ; f(!j , ✓i),�
2
✏
), (2)

where the parameters of the peak model for each observation
are collected in ⇥ = {✓1, . . . , ✓N}, and �2

✏
denotes the vari-

ance of the noise.
We assume that the resonance peak parameters are cor-

related, such that the location, amplitude and shape of res-
onance peaks are similar for observations with similar tem-
perature and spatial location. We formulate this correlation
through a prior on the parameters p(⇥). Combining this
prior with the likelihood, we estimate the model parameters
by maximizing the posterior distribution p(⇥|Z), computing
the maximum a posteriori (MAP) estimate,

⇥̂ = argmax
⇥

p(Z|⇥)p(⇥). (3)

2.2. Resonance peak model

In the microresonator experiments, the governing function is
derived from the solution, z(t) = z0 exp{i!t}, to the ordi-
nary differential equation that governs a driven damped vi-
bration on a linear resonator [12]. We use the magnitude as
our frequency response function,

f(!j , ✓i) =
Fi⌦2
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The parameters of this model are ✓i = {Fi,⌦i, Qi}, where
Fi is the amplitude, ⌦i is the resonance frequency, and Qi is
the quality factor which describes the shape of the peak.

2.3. Prior distributions

For the amplitudes F = {F1, . . . , FN}, resonance fre-
quencies ⌦ = {⌦1, . . . ,⌦N}, and quality factors Q =
{Q1, . . . , QN} we use independent prior distributions of the
same form, namely warped Gaussian process (GP) priors. For
each of the three parameter sequences, the GP allows us to
specify a covariance function that defines the degree of corre-
lation between the observations dependent on the observation
index, temperature, and spatial coordinates. Specifically we
use a radial basis function (RBF) for covariance on the fol-
lowing form
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where � = {i, t, x, y} are the covariates, and �i = (i � i0)
is shorthand for the difference between i and i0 (and similarly
for t, x, and y). The signal variance is here �2

f
= 1 and the

noise variance term is omitted, since variance is introduced,
when mapping the GP to the prior distribution. The length
scale parameters �i, �t, �x, and �y control the degree of cor-
relation with respect to the observation index or time, tem-
perature, and spatial covariates respectively. The covariance
function thus describes the covariance between parameters at
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Fig. 1. Schematic illustration of a typical experimental setup
measuring a resonators (samples) velocity response to the
actuators (left) vibration frequency with a laser Doppler vi-
brometer (LDV upper/central) transformed by the fast Fourier
transform (FFT) into a magnitude spectrum (upper right plot)
at every new temperature (lower right plot) reached by the
heat source (lower).

their possible values, allowing consistent tracking of peaks
like [11] attempts for NMR spectra varying over time. For
an ideal and clean driven damped resonator, the governing
function can be described by second order differential equa-
tion [12]. As this is a simplification of the actual system,
including informative prior constraints on the parameters will
help solving the problem and allow leaving unrelated noise
signals and other modes of variation in the residuals.

2. METHODS

2.1. Generative model

The observed data can be recorded in the form of a matrix
Z 2 RN⇥M , where the i’th row corresponds to a measured
spectrum and the j’th column to a frequency. The frequencies
are equally spaced within some predefined range !1, . . . ,!M .
In addition to this, for each measurement the temperature ti,
and spatial location of the measurement position xi, yi is also
recorded.

We model the observed spectra using a resonance peak
model f(!, ✓) corrupted by additive noise ✏,

zi,j = f(!j , ✓i) + ✏i,j . (1)

The peak model depends on the frequency ! as well as a set
of parameters ✓ which govern the location, amplitude, and
shape of the resonance peak. The additive noise is assumed
independent and identically distributed over observations and
frequencies. With a Gaussian noise model, the likelihood can
be written as

p(Z|⇥) =
NY
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where the parameters of the peak model for each observation
are collected in ⇥ = {✓1, . . . , ✓N}, and �2

✏
denotes the vari-

ance of the noise.
We assume that the resonance peak parameters are cor-

related, such that the location, amplitude and shape of res-
onance peaks are similar for observations with similar tem-
perature and spatial location. We formulate this correlation
through a prior on the parameters p(⇥). Combining this
prior with the likelihood, we estimate the model parameters
by maximizing the posterior distribution p(⇥|Z), computing
the maximum a posteriori (MAP) estimate,

⇥̂ = argmax
⇥

p(Z|⇥)p(⇥). (3)

2.2. Resonance peak model

In the microresonator experiments, the governing function is
derived from the solution, z(t) = z0 exp{i!t}, to the ordi-
nary differential equation that governs a driven damped vi-
bration on a linear resonator [12]. We use the magnitude as
our frequency response function,

f(!j , ✓i) =
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The parameters of this model are ✓i = {Fi,⌦i, Qi}, where
Fi is the amplitude, ⌦i is the resonance frequency, and Qi is
the quality factor which describes the shape of the peak.

2.3. Prior distributions

For the amplitudes F = {F1, . . . , FN}, resonance fre-
quencies ⌦ = {⌦1, . . . ,⌦N}, and quality factors Q =
{Q1, . . . , QN} we use independent prior distributions of the
same form, namely warped Gaussian process (GP) priors. For
each of the three parameter sequences, the GP allows us to
specify a covariance function that defines the degree of corre-
lation between the observations dependent on the observation
index, temperature, and spatial coordinates. Specifically we
use a radial basis function (RBF) for covariance on the fol-
lowing form
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where � = {i, t, x, y} are the covariates, and �i = (i � i0)
is shorthand for the difference between i and i0 (and similarly
for t, x, and y). The signal variance is here �2

f
= 1 and the

noise variance term is omitted, since variance is introduced,
when mapping the GP to the prior distribution. The length
scale parameters �i, �t, �x, and �y control the degree of cor-
relation with respect to the observation index or time, tem-
perature, and spatial covariates respectively. The covariance
function thus describes the covariance between parameters at
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from peaks. For the length scales we chose values in the
range of the covariates and for all 3 parameters (F,⌦, Q)
they are the same [�x,�y,�t,�i] = [1, 1, 15, 1000], except
for ⌦, which has [�x,�y] = 1016 to avoid effects from the
measurement position on the resonance frequency, which
should not be correlated for this kind of resonator. For the
truncated normal priors over ⌦ we use µ⌦ = 50.647 kHz
based on the mean of our initial resonance frequencies,
�⌦ = 5.3672 kHz, which is half width of our frequency
range and [a⌦, b⌦] = [45.217, 55.736] kHz, which is the
frequency range with 1% margin. Similar for F we use the
mean, minimum and maximum of the magnitude spectra to
set [µF ,�F , aF , bF ] = [4.3951 · 10�4, 10�2, 10�10, 10�3].
Based on our prior knowledge for ranges in Q given this
kind of resonator, we set the distribution parameters to
[µQ,�Q, aQ, bQ] = [500, 100, 10, 1000].

3.3. Validation on synthetic data

To validate the inference procedure and demonstrate the ben-
efit of the warped Gaussian process for modeling correlations
in the resonance peak parameters in spectra with low SNR,
we generate 10 synthetic data sets from the model using the
same prior parameters and RBF kernel, but double the noise
variance, �✏ = 4.198 · 10�5 =

p
2 · 2.969 · 10�5. Results for

one of these are shown in Fig. 2.b and the summarised error
statistics for all in Tab. 1.

4. RESULTS AND DISCUSSION

In Fig. 2 we see how for both real and generated data sets, the
GPP w. RBF kernel leads to MAP estimates of all parameters
following the global shape of the spectra interpolating coher-
ent peak shapes through all measurements, even when SNR
is too low to spot the peak out of context. We also see how
the model with a diagonal kernel tends to get stuck at local
minima, near the initial starting points, which is not the case
when using the RBF kernel. This suggest, that utilizing the
underlying structure of the experiment given by the relation
between the covariates in the experiment and parameters in
the governing function, can improve the model performance.
This is especially the case, when the SNR is low and or some
spectra are missing, where the GPP exhibits interpolating be-
haviour.

In Fig. 3, we see how the model with RBF kernel gives
estimates of ⌦ close to ground truth for both the synthetic
and real data. Both models estimate Q parameters lower than
the ground truth, but inspection of how well the peak shapes
fit the spectra in Fig. 2 reveals how the annotated Q’s seems
overestimated in comparison to our to model estimates.

For synthetic data we see in Table 1 how the model
achieves MAP estimates closest to the ground truth ⌦ when
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(b.) Synthetic data

Fig. 3. (a.) Expert annotations (x-axis) plotted against MAP
parameter estimates for the real data. (b.) The true generated
parameters (x-axis) plotted against MAP parameter estimates
for the generated data set seen in Fig. 2.b. A good estimator
has points close to and along the blue diagonal. The yellow
lines mark µ for each corresponding prior.

using the RBF kernel, but is better at estimating Q, when
using the diagonal kernel.

As seen in Fig. 3, both models tend to over- or underesti-
mate the Q parameters. This could be due to using a wrong
likelihood for modeling real data, which is not necessarily
shaped according to the ideal driven damped resonator used
in these models. The background noise level seems to have
a trend shifting the spectra up, which is not modelled by our
likelihood and can for our constant noise model only be alle-
viated by lowering the Q. We wish to model the background
noise as well with warped GP priors.

The quality factor, Q, is often hard to estimate using only
the magnitude spectra. Other literature [5, 12] suggest fit-
ting the slope of the phase at the peak location, to estimate
the Q. Given that our model can estimate ⌦ very well, our
model could work as a precursor for this in future work. Fur-
thermore we will like to investigate the use of a Metropolis-
Hastings algorithm and Gibbs sampling for uncertainty esti-
mates on the parameters allowing for the design of an effi-
cient user-annotation scheme and choice of prior parameters
by Bayesian optimisation.

from peaks. For the length scales we chose values in the
range of the covariates and for all 3 parameters (F,⌦, Q)
they are the same [�x,�y,�t,�i] = [1, 1, 15, 1000], except
for ⌦, which has [�x,�y] = 1016 to avoid effects from the
measurement position on the resonance frequency, which
should not be correlated for this kind of resonator. For the
truncated normal priors over ⌦ we use µ⌦ = 50.647 kHz
based on the mean of our initial resonance frequencies,
�⌦ = 5.3672 kHz, which is half width of our frequency
range and [a⌦, b⌦] = [45.217, 55.736] kHz, which is the
frequency range with 1% margin. Similar for F we use the
mean, minimum and maximum of the magnitude spectra to
set [µF ,�F , aF , bF ] = [4.3951 · 10�4, 10�2, 10�10, 10�3].
Based on our prior knowledge for ranges in Q given this
kind of resonator, we set the distribution parameters to
[µQ,�Q, aQ, bQ] = [500, 100, 10, 1000].

3.3. Validation on synthetic data

To validate the inference procedure and demonstrate the ben-
efit of the warped Gaussian process for modeling correlations
in the resonance peak parameters in spectra with low SNR,
we generate 10 synthetic data sets from the model using the
same prior parameters and RBF kernel, but double the noise
variance, �✏ = 4.198 · 10�5 =

p
2 · 2.969 · 10�5. Results for

one of these are shown in Fig. 2.b and the summarised error
statistics for all in Tab. 1.

4. RESULTS AND DISCUSSION

In Fig. 2 we see how for both real and generated data sets, the
GPP w. RBF kernel leads to MAP estimates of all parameters
following the global shape of the spectra interpolating coher-
ent peak shapes through all measurements, even when SNR
is too low to spot the peak out of context. We also see how
the model with a diagonal kernel tends to get stuck at local
minima, near the initial starting points, which is not the case
when using the RBF kernel. This suggest, that utilizing the
underlying structure of the experiment given by the relation
between the covariates in the experiment and parameters in
the governing function, can improve the model performance.
This is especially the case, when the SNR is low and or some
spectra are missing, where the GPP exhibits interpolating be-
haviour.

In Fig. 3, we see how the model with RBF kernel gives
estimates of ⌦ close to ground truth for both the synthetic
and real data. Both models estimate Q parameters lower than
the ground truth, but inspection of how well the peak shapes
fit the spectra in Fig. 2 reveals how the annotated Q’s seems
overestimated in comparison to our to model estimates.

For synthetic data we see in Table 1 how the model
achieves MAP estimates closest to the ground truth ⌦ when
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(b.) Synthetic data

Fig. 3. (a.) Expert annotations (x-axis) plotted against MAP
parameter estimates for the real data. (b.) The true generated
parameters (x-axis) plotted against MAP parameter estimates
for the generated data set seen in Fig. 2.b. A good estimator
has points close to and along the blue diagonal. The yellow
lines mark µ for each corresponding prior.

using the RBF kernel, but is better at estimating Q, when
using the diagonal kernel.

As seen in Fig. 3, both models tend to over- or underesti-
mate the Q parameters. This could be due to using a wrong
likelihood for modeling real data, which is not necessarily
shaped according to the ideal driven damped resonator used
in these models. The background noise level seems to have
a trend shifting the spectra up, which is not modelled by our
likelihood and can for our constant noise model only be alle-
viated by lowering the Q. We wish to model the background
noise as well with warped GP priors.

The quality factor, Q, is often hard to estimate using only
the magnitude spectra. Other literature [5, 12] suggest fit-
ting the slope of the phase at the peak location, to estimate
the Q. Given that our model can estimate ⌦ very well, our
model could work as a precursor for this in future work. Fur-
thermore we will like to investigate the use of a Metropolis-
Hastings algorithm and Gibbs sampling for uncertainty esti-
mates on the parameters allowing for the design of an effi-
cient user-annotation scheme and choice of prior parameters
by Bayesian optimisation.

Real data Synthetic data

GPP w. RBF ⌃ GPP w. diag. ⌃ GPP w. RBF ⌃ GPP w. diag. ⌃

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

F̂ [10�5] 9.701 6.080 2.339 1.736 1.002(331) 0.673(228) 1.123(394) 0.704(240)
⌦̂ [102] 0.213 0.154 0.209 0.146 9.743(3.596) 5.085(2.076) 23.54(7.88) 15.95(6.39)
Q̂ [102] 1.297 0.847 1.281 0.722 2.066(483) 1.451(395) 1.011(210) 0.686(136)

Table 1. For 10 synthetic data sets (right) and one real (left) the performance is reported in root mean squared error (RMSE)
and mean absolute error (MAE between the ground truth and MAP estimates for the 65 spectra with high SNR. Standard errors
are in parentheses and lowest non-overlapping errors in bold.

5. CONCLUSION

From experiments with our proposed Bayesian model, we can
conclude, that the model is appropriate and efficient for gener-
ative modelling of the magnitude spectra of the frequency re-
sponse of micro-resonators. Using a Bayesian formulation of
the model, we can introduce regularisation towards expected
parameters and enforce non-negativity through the the trun-
cated priors. Introducing covariance between function param-
eters through the warped GP prior, helps interpolating model
parameters in areas with low SNR. Furthermore some experi-
ments showed improvement in model performance, when us-
ing the warped GP priors and a proper kernel function relat-
ing covariates to the governing function parameters, thereby
utilizing the underlying structure of the experiment. The pro-
posed model shows the potential of being applied in various
different fields of research that require tracking of peaks in
low SNR and characterization of materials.
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Comparison of models: Reproducing ground truth? 
• Diagonal kernel [upper]: Closer to expert annotations on resonator data 
• RBF kernel [lower]: Closer to synthetic parameters and mode of prior    

c(ϕ, ϕ′�) = δ (Δi) Diagonal 

F Ω Q

(a) Micro-resonator data

(b) Synthetic data

Fig. 2. (a) Data from real experiment with micro-resonator. (b) Data generated from model with RBF kernel. Both data sets
use the same covariates, y, where the spatial (x and y) is represented by the euclidean distance to the attachment point of
the resonator in (a) as the 2nd to rightmost plots. In the rightmost plot we show the temperature (t) growing linearly with
the temporal (i) changes as seen in the leftmost labels. In the leftmost columns, the full spectrograms are presented with ⌦
estimates on top, using black circles for RBF kernel model, white triangles for diag. kernel model, red squares for initial ⌦ and
blue dots for true parameters. A subset of spectra are stacked and aligned in the 3 plots to the right of these with resonance peak
shapes (in black dotted lines) generated from Eq. 4 with the parameter estimates.
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Fig. 1. Schematic illustration of a typical experimental setup
measuring a resonators (samples) velocity response to the
actuators (left) vibration frequency with a laser Doppler vi-
brometer (LDV upper/central) transformed by the fast Fourier
transform (FFT) into a magnitude spectrum (upper right plot)
at every new temperature (lower right plot) reached by the
heat source (lower).

their possible values, allowing consistent tracking of peaks
like [11] attempts for NMR spectra varying over time. For
an ideal and clean driven damped resonator, the governing
function can be described by second order differential equa-
tion [12]. As this is a simplification of the actual system,
including informative prior constraints on the parameters will
help solving the problem and allow leaving unrelated noise
signals and other modes of variation in the residuals.

2. METHODS

2.1. Generative model

The observed data can be recorded in the form of a matrix
Z 2 RN⇥M , where the i’th row corresponds to a measured
spectrum and the j’th column to a frequency. The frequencies
are equally spaced within some predefined range !1, . . . ,!M .
In addition to this, for each measurement the temperature ti,
and spatial location of the measurement position xi, yi is also
recorded.

We model the observed spectra using a resonance peak
model f(!, ✓) corrupted by additive noise ✏,

zi,j = f(!j , ✓i) + ✏i,j . (1)

The peak model depends on the frequency ! as well as a set
of parameters ✓ which govern the location, amplitude, and
shape of the resonance peak. The additive noise is assumed
independent and identically distributed over observations and
frequencies. With a Gaussian noise model, the likelihood can
be written as
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where the parameters of the peak model for each observation
are collected in ⇥ = {✓1, . . . , ✓N}, and �2
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denotes the vari-

ance of the noise.
We assume that the resonance peak parameters are cor-

related, such that the location, amplitude and shape of res-
onance peaks are similar for observations with similar tem-
perature and spatial location. We formulate this correlation
through a prior on the parameters p(⇥). Combining this
prior with the likelihood, we estimate the model parameters
by maximizing the posterior distribution p(⇥|Z), computing
the maximum a posteriori (MAP) estimate,

⇥̂ = argmax
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p(Z|⇥)p(⇥). (3)

2.2. Resonance peak model

In the microresonator experiments, the governing function is
derived from the solution, z(t) = z0 exp{i!t}, to the ordi-
nary differential equation that governs a driven damped vi-
bration on a linear resonator [12]. We use the magnitude as
our frequency response function,
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The parameters of this model are ✓i = {Fi,⌦i, Qi}, where
Fi is the amplitude, ⌦i is the resonance frequency, and Qi is
the quality factor which describes the shape of the peak.

2.3. Prior distributions

For the amplitudes F = {F1, . . . , FN}, resonance fre-
quencies ⌦ = {⌦1, . . . ,⌦N}, and quality factors Q =
{Q1, . . . , QN} we use independent prior distributions of the
same form, namely warped Gaussian process (GP) priors. For
each of the three parameter sequences, the GP allows us to
specify a covariance function that defines the degree of corre-
lation between the observations dependent on the observation
index, temperature, and spatial coordinates. Specifically we
use a radial basis function (RBF) for covariance on the fol-
lowing form
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where � = {i, t, x, y} are the covariates, and �i = (i � i0)
is shorthand for the difference between i and i0 (and similarly
for t, x, and y). The signal variance is here �2

f
= 1 and the

noise variance term is omitted, since variance is introduced,
when mapping the GP to the prior distribution. The length
scale parameters �i, �t, �x, and �y control the degree of cor-
relation with respect to the observation index or time, tem-
perature, and spatial covariates respectively. The covariance
function thus describes the covariance between parameters at
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Fig. 1. Schematic illustration of a typical experimental setup
measuring a resonators (samples) velocity response to the
actuators (left) vibration frequency with a laser Doppler vi-
brometer (LDV upper/central) transformed by the fast Fourier
transform (FFT) into a magnitude spectrum (upper right plot)
at every new temperature (lower right plot) reached by the
heat source (lower).

their possible values, allowing consistent tracking of peaks
like [11] attempts for NMR spectra varying over time. For
an ideal and clean driven damped resonator, the governing
function can be described by second order differential equa-
tion [12]. As this is a simplification of the actual system,
including informative prior constraints on the parameters will
help solving the problem and allow leaving unrelated noise
signals and other modes of variation in the residuals.
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The parameters of this model are ✓i = {Fi,⌦i, Qi}, where
Fi is the amplitude, ⌦i is the resonance frequency, and Qi is
the quality factor which describes the shape of the peak.

2.3. Prior distributions

For the amplitudes F = {F1, . . . , FN}, resonance fre-
quencies ⌦ = {⌦1, . . . ,⌦N}, and quality factors Q =
{Q1, . . . , QN} we use independent prior distributions of the
same form, namely warped Gaussian process (GP) priors. For
each of the three parameter sequences, the GP allows us to
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lation between the observations dependent on the observation
index, temperature, and spatial coordinates. Specifically we
use a radial basis function (RBF) for covariance on the fol-
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is shorthand for the difference between i and i0 (and similarly
for t, x, and y). The signal variance is here �2
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noise variance term is omitted, since variance is introduced,
when mapping the GP to the prior distribution. The length
scale parameters �i, �t, �x, and �y control the degree of cor-
relation with respect to the observation index or time, tem-
perature, and spatial covariates respectively. The covariance
function thus describes the covariance between parameters at

GPP w. RBF kernel GPP w. diag. kernel

RMSE MAE RMSE MAE

Ampl. (F̂ ) 0.113 0.340
Loc. (⌦̂) 0.0312 2.76
Qual. (Q̂) 0.398 0.458

Table 1. For synthetic data we can evaluate the performance
in root mean squared error (RMSE), negative log-likelihood
and negative log-posterior on MAP estimates from the model
with RBF kernel and the model with diagonal kernel.

2.5. Optimisation

3. EXPERIMENTS

3.1. Validation on synthetic data

3.2. Crystaline drug

We use data from a real experiment using a laser-Doppler
vibrometer to measure the frequency response of a drug in
crystal form, which is shown in figure 1. Here the control
variables are seen as the temperature profile and spatial coor-
dinates of the measurement points on the surface of the crys-
tal.

• Synthetic data

– From GP model - test w. wrong and right priors

• Strings

• Crystals

3.3. Crystal data

The data used from a real experiment with crystalline drug
can be seen in figure 1. The experiment consists in a set of
multiple measurements at different locations on the analyite
over a period of time. In this particular experiment, the ana-
lyte is subject to a change in temperature. Taking these setup
characteristics into account, it can be observed a particular
spectra structure based on time, the temperature profile and
the physical location of the points.

For the initial points used in the modelling, an approxi-
mation is provided by a user by means of a user interface.

4. RESULTS

• Figures for comparisons

• Tables for comparisons

hk ⇠ GP(0,⌃k) (9)

✏i,j ⇠ N (0,�✏) (10)

p(⇥) =
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k=1

p(Hk) (11)

zi,j = f(!j , ✓i) + ✏i,j , , ✓i = {Fi,⌦i, Qi} (12)

⇥ = {✓i}Ni=1 = {Hk}L=3
k=1 = {F ,⌦,Q} (13)
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⇥̂ = g(h(⌘̂)) (21)
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