
❑Mouth, jaw, tongue, lips, palates and other articulators all work together 

to produce human speech.

❑ Failure in moving these parts appropriately affects speech intelligibility 

and causes speech disorders.

❑ Causes of speech disorder in children, including:

➢ Muscle weaknesses, e.g. dysarthria

➢ Neurological disorder, e.g. apraxia

➢ Structural abnormalities, e.g. cleft lip/palate

➢ Unknown, e.g. articulation/phonological disorder
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Speech Sound Disorder (SSD)

Motivation

❑Generally, children do not get assessed; parents and teachers often do

not notice speech problems until too late.

❑ Delay in treatment can cause serious problems such as social

impairment, mental health disorder and learning disabilities.

❑ Subjective screening of children with speech disorders is costly, time

consuming and can be infeasible.

❑ Automatic speech analysis offer a practical alternative to human

screening.

❑ Restricted research in this area due to lack of speech disorder corpora

and unreliability of low-level annotation (e.g. phoneme-level)

Objective

Develop an accurate subject-level automatic screening

method for detecting speech disorder in children using

high-level acoustic measures.

Paralinguistic Features

❑ A set of low-level descriptors representing the prosodic, spectral and

voice quality features of the speech.

❑ Speech disorders affect the prosodic characteristics and quality of

speech

❑ Two standard sets, GeMAPS (62 parameters), eGeMAPS (88 parameters)
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Experiment

Speech Corpus

✓ UltraSuite dataset, a speech

recordings and ultrasound repository

of speech therapy sessions

✓ 58 Typically Developing (TD) children

and 28 children with SSD

✓ Age range from 6 - 10 years old

Classification Method

✓ SVM classifier with 4 fold CV matched

by age and gender

✓ Recursive Feature Elimination (RFE)

feature selection method

✓ Unweighted Average Recall (UAR)

classification metric

CV

N# Training 

Segments

N# Test 

Segments

TD SSD TD SSD

Fold 1 4287 9758 482 3349

Fold 2 3995 9895 774 3212

Fold 3 4365 10298 404 2809

Fold 4 4066 9370 703 3737

Average 4178 9830 590 3276

Subset Type

N# Children

AgeFemal

e
Male

UXTD TD 31 27
9y 3m ±

1y 10m

UXSSD SSD 2 6
7y 7m ±

1y 6m

UPX SSD 4 16
8y 4m ±

2y 2m

❑ An automatic screening method for children with speech sound disorder based on paralinguistic features.

❑ Comparing between two standard paralinguistic acoustic parameter sets, the GeMAPS and the extended eGeMAPS.

❑ Achieving segment-level and subject-level UAR of ~79% and ~87% respectively.

❑ The extended eGeMAPS feature set, which contains cepstral parameters and more dynamic information, was shown to

outperform the abstracted GeMAPS in all experiments.

❑ ~84% subject-level accuracy could be obtained using only the spectral features.

❑ The energy and amplitude related features achieved high subject-level classification score of ~80%.

Conclusion


