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Background: Recurrent Neural Networks

®  Highly-parallel connectionist networks

® Learn a nonlinear mapping by minimizing an objective via gradient EIj
driven by data . (MoETayer o

G(x),

®  Successfully applied to various domains:
o e.g. NLP, Genomics, Computer vision

® Demand copious amount of compute & memory resources ij

Mixture-of-Experts network with >137 billion parameters
(~548 GB memory with 32-bit floats).

Shazeer, N. et al. 2017. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. 2
arXiv preprint arXiv:1701.06538 (2017).




Motivation
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SENSORS AND CONTROLLERS

How can neural networks be tractably deployed on edge devices
with constrained resources?

https://openautomationsoftware.com/blog/iiot-edge-computing-vs-cloud-computing/



https://openautomationsoftware.com/blog/iiot-edge-computing-vs-cloud-computing/

Reservoir Computing

®  Reservoir computing (RC)
O Stochastic dynamics
O Nonlinear responses
°

Echo state networks (ESN)

O  Rate-base neurons
O Dynamics & memory dictated by spectral radius
o

Teacher signal only trains readout weights

Jaeger, H. (2001). Short term memory in echo state networks. GMD Report 152, German National
Research Center for Information Technology.

Lukosevicius, Mantas. “A Practical Guide to Applying Echo State Networks.” Neural Networks: Tricks of the
Trade (2012).




Depth 1 Depth 2 Depth 3 Depth N1p

Mod-DeepESN |

®  Flexible topology for ESNs

® Elongated memory capacity

®  Captures multi-scale dynamics of temporal data

® Standard components:

(0]

O
O
O

Randomly initialized weights

Tanh activations

Training using the pseudo-inverse (no backpropagation)
Training maps states matrix to a forecasted value

Z. Carmichael, H. Syed, and D. Kudithipudi, “Analysis of Wide and Deep Echo State Networks for
Multiscale Spatiotemporal Time Series Forecasting,” in Proceedings of the 7th Annual Neuro-inspired
Computational Elements Workshop, ser. NICE “19. New York, NY, USA: ACM, 2019, pp. 7:1-7:10.
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Tucker Decomposition a

B

G

i ~ A
®  Tucker: generalization of SVD to N-way tensors
®  Factor matrices are orthogonal q
B
®  Rank reduction (tensor compression) possible by discarding . N " §
Eigenvectors of each mode
® Not all modes require decomposition
Ri Ry Rs

TrGx1AxoBx3C=> Y > g, mna,obyoc,

r1=1 ro=1 ra=1

Kolda, Tamara G., and Brett W. Bader. "Tensor decompositions and applications." SIAM review 51.3 6
(2009): 455-500.




Tucker-Decomposed Mod-DeepESN

Decomposition and compression of reservoir states as a tensor

Orientations:

(0]

O O O O

Compress along the final mode

NSN,

NN, x NN,

NN, xN,x N,

NN, x N,z x N, x N, (shown on right)
NN, x N gx NN,

NN, x N, x NN,




N. Halko, P. Martinsson, and J. A. Tropp, “Finding structure with randomness: Probabilistic algorithms for
constructing approximate matrix decompositions,” SIAM Review, vol. 53, no. 2, pp. 217-288, 2011.

Training Comparison

Conventional Compressed (Proposed)
® SVD pseudo-inverse ® Explicit pseudo-inverse
®  Explicit solution unstable with full states ® Qverhead: SVD in HOOI algorithm
matrix for real-valued forecasting tasks O Replace with probabilistic algorithm -

efficient for truncated SVD

G, AW . AWN) —HOOI(X,R;...Ry)

b))
Woit=(V=—-UT|Y =
t ( >oX + Al ) G = RESHAPE (G, NgN; x N NR)

Wou = (GTG +8I) ' GTY




Training Comparison: Complexity

Conventional Compressed (Proposed)
® Complexity bottleneck: (N,N,)? ® Complexity bottleneck: k3
O  Size of data squared ©  Truncation size cubed
® |ow complexity for small number of samples ® Generally lower complexity here
O[(NLNg)?*(14+-NsN;)+(NsN;)*NL Ng+Ng NNy Nr Ny |, O[k® + k*(NsN; + NLNg) + kNgN, (N Ng + Ny)]




Evaluation

1 Ns N )
RMSE = ) — $(t
NN ;tZl (y(t) —9())

®  Multi-scale nonlinear time series
O Akin to sensory data observed by edge devices

®  Compare states orientations and Tucker parameters

® Relative error to original network (average over 10 runs)

®  Measurement of training FLOPs

O Solely the FLOPs for training readout, no reservoir computations considered

10
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®  (lassical chaotic time series benchmark for forecasting of timestep (dt = 0.1

dynamical systems de
==

B 2(t —7) T vz (t)

1+z(t—7
® Nonlinear differential equation generated using 4th order
Runge-Kutta method

® 84-step-ahead forecasting, 10,000 samples
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Mackey Glass Results

TUCKER-DECOMPOSED MOD-DEEPESN PERFORMANCE (MACKEY

GLASS). NR =512, N, g =2, N.p = 1.

Method

Relative Error

Training FLOPs

Uncompressed
NLNR-rand-once
NLxNR-rand-once
NLBxNLDxNR-rand-once
NLBxNLDNR-rand-once
NLDxNLBNR-rand-once

+0.00%
—0.54%
—0.39%
—0.87%
—0.22%
+0.13%

+0.00%
—85.2%
—85.8%
—85.7%
—85.8%
—85.1%
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daily
204 —-=- monthly mean resample
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Minimum daily temperature series of Melbourne, Australia, P e s A A,
1981 - 1990 timestep (day)

1-step-ahead forecasting task

~3,600 samples (days)

13




Melbourne Results

TUCKER-DECOMPOSED MOD-DEEPESN PERFORMANCE (MELBOURNE

MINIMUM TEMPERATURE). Ng = 64, Ni, g = 2, Nr,p = 3.

Method

Relative Error

Training FLOPs

Uncompressed
NLNR-rand-once
NLxNR-rand-once
NLBxNLDxNR-rand-once
NLBxNLDNR-rand-once
NLDxNLBNR-rand-once

£0.00%
—0.63%
—0.25%
—0.25%
—0.61%
—0.58%

£0.00%
—95.7%
—67.8%
—90.3%
—95.1%
—90.3%
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Conclusions
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® Tensorization can improve forecasting performance

®  Training complexity greatly reduced (~95%)
® Indicates these ideas are suitable for edge deployment

®  Future work:
O Extend to other weight matrices of Mod-DeepESN
O Evaluate with more complex tasks
O Tensor regression
O Other decompositions: CP, tensor-train, Tucker2
o

Compare directly with deep learning counterparts

karlstratos.com/drawings/drawings.html
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