End-to-end Detection of Attacks to Automatic Speaker Recognizers with
Time-attentive Light Convolutional Neural Networks
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Introduction

e We introduce an end-to-end setting for detection of spoofing
attacks to speaker recognizers
o End-to-end: Speech features directly mapped into scores

indicating how likely the input is to be an attack
o Single step training
e Both 2-dimensional convolutional models and time

convolutions are evaluated on the data introduced for the
ASVSpoof 2019
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Cepstral Coefficients

General setting

e Encoding of input audio into local descriptors
o LCNNSs are employed:
e Fastto train
e MFM activation
o Variation of Maxout
o Unlikely to overfit
o 1-dimensional convolutions over the time dimension for the
case of cepstral coefficients
o 2-dimensional frequency-time convolutional models for the
case fo spectral representations

e Attentive strategy for pooling into a global descriptor
o Model learns how to discard uninformative frames
o Allows processing of inputs with varying length

e Projection of statistics of weighted local descriptors is finally given
to a fully connected classification layer

K-dimensional
local descriptors

Input Convolution LCNN

Projected statistics of weighted
local descriptors

Qutput Convolution Self-attention
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Attentive temporal pooling
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Training details

e Sampling training examples:
o Ensure balanced minibatches

Bona fide Spoof
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Online augmentation: A random window of fixed
duration is sampled every time an example is
selected. Additionally, minibatches are cropped into
a random duration prior to feeding in the model

Training is carried out with Stochastic Gradient
Descent using mini-batches of size 16 and 32 for the
cases of spectral and cepstral coefficients,
respectively. Polyak's momentum is also employed
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Evaluation data
e Data Introduced for the ASVSpoof challenge. Two
sub-challenges:
o Logical access: attacks created with speech synthesis
o Physical access: attacks created with simulated replay
# Recordings
# Speakers Logical Access Physical Access
Bona fide Spoof Bonafide Spoof
Training 20 2580 22800 5400 48600
Development 20 2548 22296 5400 24300
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Results
® [ogical Access
Feature-Model = EER(%) t-DCF
LFCC-GMM 2.71 0.0663
ASVspoof benchmarks COCC-GMM 0.43 0.0123
Internal baselines CLILC-GVM 039 g
1-vector-PLDA 0.70 0.0210
Probosed CQCC-LCNN29 1.07 0.0321
P LFCC-LCNN29 020  0.0048
® Physical Access
Feature-Model EER(%) t-DCF
LFCC-GMM 11.96  0.2554
ASVspoof benchmarks COCC-GMM 087 0.1953
Internal baselines widlhAM #74 Ml
1-vector-PLDA 9.17 0.2310
CQCC-LCNN29 2.93 0.0752
Proposed Spec-LCNNO9 2.00 0.0488
ProdSpec-LCNN9 0.87 0.0232
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Conclusions

e We introduced variations of the LCNN architecture augmented
with a self-attention mechanism so as to perform end-to-end
detection of spoofing attacks
o Introduced approach outperforms classical settings involving

GMM classifiers

e In future work we intend to investigate the ability of end-to-end

models in generalizing across attack strategies
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