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Outline

® Motivations behind statistical analysis of antenna array systems
® Perturbation modeling

® Perturbation analysis

® Simulation results

® (Conclusion and future works
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Motivations behind statistical analysis of antenna array systems

® System model for analyzing the effect of variabilitites due to manufacturing processes
in beamformer modules

— variability of phase in the manufacturing process
— variability of gain in the manufacturing processes
— variability of element positions in the manufacturing processes
® What will happen to beam pattern, array gain, and sidelobe levels in presence of these
variabilities?
® How can we determine maximum allowable variations for a given performance
penalty?
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Perturbation modeling, a bit of history
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Perturbation modeling

® Phase shifter modeling for analyzing the electromagnetic beam of a linear array

with N elements
N—1 | |
B(0,v) = B(k) = WHV(k) - Z gz.ej(@)e—.?kpi
i=0

® Variability modeling for phase, gain and element positions”
N-1 |
Bk) = Y gi(1+ Ag,)eli@itadn—ikp)
i=0

k:?[sinw)cos(w) sin(0)sin(y) cos(9)]

® Where all perturbations are considered as uncorrelated zero-mean Gaussian
random variables

*H.L. Van Trees, Optimum array processing: Part IV of detection, estimation, and modulation theory, John Wiley & Sons, 2004.
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Perturbation analysis

® Variability in manufacturing processes of phase ¢J(¢itA¢i)

beam pattern realizations for 0: =0, 05) =0.001, and ai =0 beam pattern realizations for a: =0, aj) =0.01,and 02 =0
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Perturbation analysis

® Variability in manufacturing processes of gain gi(1+ Ag;)

beam pattern realizations for ": =0.001, 03) =0, and ai =0 beam pattern realizations for ff: =0.01, 03 =0,and o i =0
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Perturbation analysis

® Variability in manufacturing processes of position of elements
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Perturbation analysis

® Variations of beam power

A =E[|Bk)|*] — (E[|B(k)|*])?

® Mean of beam power

E[|B (k)]

N—1
— ]Bc(k)\Qe_(°<2b+ai) +((1+ 03) — e_(ai+°§)) g’

i=0
® And then we need to calculate

E[|B(k)|*] = E[B(k)" B(k)B(k)" B(k)
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Perturbation analysis

® Variations of beam power

A = E[|B(k)|"] - (E[| B(k)[*))?
® Mean of beam power

N—-1
—(02+02 —(02+02
E[IB&)]’] = [B(k)Pe™ 7 4 ((1 + 07) — e” V) 3 g7
1=0

® And then we need to calculate

6](¢1 +A¢2 _¢l _Aqsl +¢7n +A¢7n _¢q —Aqu ) e_]k(pz —Pi +p7n —Pgq .
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Perturbation analysis

Lemma 17: expected value of multiplication of four jointly Gaussian random
variables

E[Ag;AgAGnAgy) = E[Ag;AG|E[AgnAgy] + E[Agi Agn]|E[AgiAg,]

+E[AgiAgq| E|AGLAGm),
Lemma 2%: expected value of product of normal exponential random variables
K
E [ H eaizi] _ E[ea z] — o2 m-+0.5a" Ya
i=1

Where m is the mean vector and 2 is the covariance matrix

* A. Papoulis and S. U. Pillai, Probability, random variables, and stochastic processes, p. 258, Tata McGraw-Hill Education, 2002.
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Perturbation analysis

® Using Lemma | & 2

N—-1N—-1N—-1N-1
A = y‘ gzglgmgqej(cbi—<z5z+¢m—¢q)e—jk(pg_pgjupgﬁ_pg))

1=0 l: 0 m=0 ¢=0

(1 + (5'mq + 5i7n + 5iq + 5lm + 5lq + 51’[)0—3 + (dilqu + 5im,5lq + 5’iq5l7n)0-3>

(6035 (_2+(5mq _52'771 +5zq +6l7n _5lq +5il ))) <€O—§ (_2+(57nq _5im +5'iq +5lm _Slq_f_(szl)))]

N—-1
2
— (1B (0)Pe (TR (14 02) — e~ 3R] 3 g2)
1=0
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Simulation results

® Monte-Carlo simulations for 100 realizations
® One standard deviation = 0.01&88
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Simulation results
Statistical bounds

® One standard deviation = 0.0200

® Maximum three standard deviations is considered (0.06)
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Simulation results

Side-lobe, main-lobe variation analysis
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Simulation results

® Tolerance analysis

® For a certain amount of variation in manufacturing process, we can
determine maximum allowable variations for a given performance penalty
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Conclusion & Future works

® We model the phase shifters with three parameters for manufacturing process
variability analysis, and can predict the maximum variations in the beam
pattern.

® We can make tolerance study based on statistical derivations we made. We
can indicate that for a certain amount of loss in the main lobe or a certain
amount of increase in the side lobes, how much each parameter is free to
variate in the manufacturing process.

® Future works:

— We can make similar study for frequerncy selective variations, such as
beam squint

— We can make similar statistical modeling and analysis for other
components in the beamformer module and take into account other
impairments (Timing jitter, PA nonlinearities, ...)

— We can apply intended variations in the input parameters of Chalmers
Massive MIMO Testbed (MATE) and measure the resulting beam
patterns in the an-echoic chamber to show and validate our results in
different scenarios
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