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Overview of Camera Radar Fusion

Can generate belief network of proposed 
object regions from both sensors and 

combine using an inference algorithm [2] UAVs [3] Automotive [4]

[1] S. Wu, S. Decker, P. Chang, T. Camus and J. Eledath, "Collision Sensing by Stereo Vision and Radar Sensor Fusion," in IEEE Transactions on Intelligent Transportation Systems, vol. 10, no. 4, pp. 606-614, Dec. 2009.
[2] B. Steux, C. Laurgeau, L. Salesse and D. Wautier, "Fade: a vehicle detection and tracking system featuring monocular color vision and radar data fusion," Intelligent Vehicle Symposium, 2002. IEEE, Versailles, France, 2002, pp. 632-639 vol.2.
[3] O. Meister, N. Frietsch, C. Ascher and G. F. Trommer, "Adaptive path planning for VTOL-UAVs," in IEEE Aerospace and Electronic Systems Magazine, vol. 24, no. 7, pp. 36-41, July 2009.
[4] X. Wang, L. Xu, H. Sun, J. Xin and N. Zheng, "On-Road Vehicle Detection and Tracking Using MMW Radar and Monovision Fusion," in IEEE Transactions on ITS, vol. 17, no. 7, pp. 2075-2084, July 2016.
[5] https://www.sandia.gov/radar/imagery/index.html and [6] Google maps satellite image of same location

Methods

[5]

[6]

SAR and satellite image 
of Naval air station

Applications

Radar

Camera

Fusion

Kalman filter

Improved
object tracking

Reduced false 
alarm rate by 
cross validation 

Post-detection fusion

Target

Independent 
object

detection

Low-level combined 
object detection

In [1], stereo vision applies contour fitting. 
radar applies multi-target tracking. Combined 
using EKF to estimate pose and motion. 

Radar Error

Vision Error
Fused Error

Low Level Fusion

https://www.sandia.gov/radar/imagery/index.html


© 2019 Robert W. Heath Jr. 

Clustering: structure in addition to sparsity
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[1] L. Wang, L. Zhao, G. Bi, C. Wan and L. Yang, "Enhanced ISAR Imaging by Exploiting the Continuity of the Target Scene," in IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 9, pp. 5736-5750, Sept. 2014.
[2] X. Wang, G. Li, Y. Liu and M. G. Amin, "Enhanced 1-Bit Radar Imaging by Exploiting Two-Level Block Sparsity," in IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 2, pp. 1131-1141, Feb. 2019. 
[3] H. Duan, L. Zhang, J. Fang, L. Huang and H. Li, "Pattern-Coupled Sparse Bayesian Learning for Inverse Synthetic Aperture Radar Imaging," in IEEE Signal Processing Letters, vol. 22, no. 11, pp. 1995-1999, Nov. 2015.
[4] L. Yu, H. Sun, J.P. Barbot, and G.Zheng, "Bayesian compressive sensing for cluster structured sparse signals,” in Signal processing 92, no. 1 (2012): 259-269.
[5] Z. Zhang and B. D. Rao, "Sparse Signal Recovery With Temporally Correlated Source Vectors Using Sparse Bayesian Learning," in IEEE Journal of Selected Topics in Signal Processing, vol. 5, no. 5, pp. 912-926, Sept. 2011.
[6] A. Ali, N. González-Prelcic and R. W. Heath, "Millimeter Wave Beam-Selection Using Out-of-Band Spatial Information," in IEEE Transactions on Wireless Communications, vol. 17, no. 2, pp. 1038-1052, Feb. 2018.
[7] P. Schniter, "A Message-Passing Receiver for BICM-OFDM Over Unknown Clustered-Sparse Channels," in IEEE Journal of Selected Topics in Signal Processing, vol. 5, no. 8, pp. 1462-1474, Dec. 2011.
[8] P. Wang, M. Pajovic, P. V. Orlik, T. Koike-Akino, K. J. Kim and J. Fang, "Sparse channel estimation in millimeter wave communications: Exploiting joint AoD-AoA angular spread," 2017 IEEE International Conference on Communications (ICC), 2017.

[2]

[1]

Clustering/smoothness 
[1,2,3] exploited in addition 
to sparsity in AoA, AoD etc

Non-zeros cluster/block

Block sparse: 𝑥" 𝑥# 𝑥$ …𝑥&'" 𝑥& 𝑥&(" …𝑥) *

Audio signals 
[3] Music [4]

EEG [5] Off-grid parameter 
estimation (leakage)

Other applications

Radar

[6]

Communication

Clustering in AoA,  AoD & 
delay has been observed in 

prior work [7,8] 

Instead of being sporadically sparse, nature is smooth with non-zero entries 
occurring in clusters. This can be exploited for estimation problems.
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Prior work

6[1] J. Fang, Y. Shen, H. Li and P. Wang, "Pattern-Coupled Sparse Bayesian Learning for Recovery of Block-Sparse Signals," in IEEE Transactions on Signal Processing, vol. 63, no. 2, pp. 360-372, Jan.15, 2015.

LASSO PC-SBL , 𝛽 = 1PC-SBL , 𝛽 = 0 Coupled ℓ"-norm 

|𝐲 − 𝐀𝐱| ## + 𝜆 𝐱 "

Sparsity inducing ℓ"-norm 
minimization solution 
(LASSO) – picks out the 
largest entries of 𝐱
depending on 𝜆

Sparse Bayesian learning 
with independent prior 
[1]. A Bayesian way of 
forming a sparse 
solution

Pattern coupled sparse 
Bayesian learning with 
correlated prior [1]. 
Continuity encouraged by 
sharing hyperparameters 
of underlying Gaussian 
prior between 
neighboring entries

Proposed solution: Novel 
regularization of linear model 
that combines sparsity and 
continuity. We use the term 
“Coupled ℓ"-norm” for this. 
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Problem formulation
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Soft-sparsity regularization
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For 𝐑 = 𝐈, the formulation simplifies to ℓ"-norm regularization

General 𝐑 : Introducing off-diagonal terms in 𝐑 can be thought of as a generalization of ℓ"-norm 
where R signifies the correlation between the values of amplitude of 𝐱

𝐽(𝐱) = |𝐲 − 𝐀𝐱| ## + 𝜆 𝐱 * |𝐱|

Model constraint “Soft-sparsity” constraint

𝐽(𝐱) = |𝐲 − 𝐀𝐱| ## + 𝜆 𝐱 *𝐑'" |𝐱| Element-wise 
“coupled ℓ"” norm

𝐲 = 𝐀𝐱 + 𝐧
Linear system solution

Sparse representation

Compressed sensing measurement

Captures many formulations in 
communications, radar, navigation

𝐑 based on structural 
information or side information
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Extension to 2D
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This model captures the FFT based range-DoA processing on a FMCW radar 

Model constraint “Soft-sparsity” constraint

𝐽(𝐗) = |𝐘 − 𝐀@𝐗𝐀A| B# + 𝜆 Tr 𝐑@'" 𝐗 *𝐑A'" 𝐗
Element-wise

𝐘 = 𝐀@𝐗𝐀A + 𝐍Beamspace channel model Range DoA radar processing

Right measurement\dictionary matrixLeft measurement\dictionary matrix

Solution
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Gradient descent based iterative 
solution to the above optimization
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FFT based FMCW processing
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Matrix R
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Encourage recovery 
in this area

Structural information approximated by a Toeplitz matrix as a heuristic

To exploit prior knowledge, one could 
give unequal weight on the diagonal

The choice of 𝐑 depends on structural knowledge about the problem and any 
side information. Our current choice is based on heuristics and experimentation.

R(a)N⇥N =
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Experiments
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Experimental setup
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Stereo camera

INRAS RadarBook
(FMCW)

Calibration

Coupled ℓ" solver

Capture camera and 
radar dataCapture radar data

Camera object 
detection (YOLO [1])

R matrix formulation 
based on detected 

object and calibration

R matrix formulation 
based on heuristic

Radar only setup Radar + camera setup

Other/better “recipes” for construction 
of 𝐑 possible. Ongoing work. 

Parameter Value

Center Frequency fc 76.5 GHz

Sweep Bandwidth 1 GHz 

# of samples N 504

NTX 4 (7𝜆 /2 Spacing)

NRX 8 (𝜆 /2 Spacing)

# elements in virtual aperture 29 (𝜆 /2 Spacing)

Camera Resolution 1080p

[1] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in Proc. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016, pp. 779–788. 
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Calibration
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Translation and rotational 
matrices b/w the two cameras

Calibration helps transform the camera co-ordinate 
system to the radar co-ordinate system

[1] J. Oh, K. Kim, M. Park and S. Kim, "A Comparative Study on Camera-Radar Calibration Methods," 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, 2018, pp. 1057-1062.
[2] [1] G. Bradski, “The OpenCV Library,”Dr. Dobb’s Journal of Software Tools, Internet: https://www.vision-systems.com/content/dam/VSD/NextGen/5-3D-2.pdf,  2000 
[3] Stereo camera calibrator https://www.mathworks.com/help/vision/ref/stereocameracalibrator-app.html

2

4
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5 =
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xc
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5
Homography: A 2D projective transformation 
that maps the camera pixels to radar pixels (at 
least spatially – degenerate in range dimension) 

Extrinsic calibration [1] 
(B/w one camera and radar)

Stereo calibration [3] and depth 
estimation (B/w two cameras)

b = Baseline 

ps = Pixel size d = Disparity value

Stereo

D =
f ⇤ b
d ⇤ ps

[1][2]

https://www.vision-systems.com/content/dam/VSD/NextGen/5-3D-2.pdf
https://www.mathworks.com/help/vision/ref/stereocameracalibrator-app.html
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2D scenario: Range and Spatial DoA
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No ‘ground truth’ available here

For now the ‘ground truth’ is taken as the FFT based processing
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Radar only setting

16

-80 -60 -40 -20 0 20 40 60 80
Ang (°)

0.5

1

1.5

2

2.5

3

R
 (m

)

Coupled L1

-100

-90

-80

-70

-60

-50

-40

-30

-20

-80 -60 -40 -20 0 20 40 60 80
Ang (°)

0.5

1

1.5

2

2.5

3

R 
(m

)

PC-SBL,  = 0 Processing

-80 -60 -40 -20 0 20 40 60 80
Ang (°)

0.5

1

1.5

2

2.5

3

R 
(m

)

PC-SBL,  = 1 Processing

-80 -60 -40 -20 0 20 40 60 80
Ang (°)

0.5

1

1.5

2

2.5

3

R 
(m

)

L1 Processing

-80 -60 -40 -20 0 20 40 60 80
Ang (°)

0.5

1

1.5

2

2.5

3

R
 (m

)

FFT

Targets can be observed clearly separated 
from the background clutter. Additionally, the 
two targets placed close-by can be resolved.

Comparison algorithmsProposed solution
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Effect of R matrix

The correlation assumed amongst the values of 𝐱 controls the spatial spread 
of the radar image. The matrix 𝐑 needs to be chosen carefully.

Proposed 
solution
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Radar + stereo camera setting
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Recipie for 𝐑A

Object detection in image 
(black box e.g. YOLO [1])

Map the pixels of the detected 
objects to spatial DoA using 

extrinsic calibration data

Place Toeplitz sub-matrices in 
the bins of 𝐑A corresponding to 

the DoA of the objects
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[1] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in Proc. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016, pp. 779–788. 

Better separation in both DoA and range. 
Depends on the range and DoA of potential 

target reported by camera. Minimal side-lobes. 
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1D scenario: Spatial DoA
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1D spatial data obtained by summing along the range dimension. All 
targets collapse onto the DoA dimension.

! = −4∘

! = 5∘

! = 35∘

INRAS RadarBook
Camera
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Radar only
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Solution biased in 
favor of the side 
information from 
camera module

Coherent with a 
smooth version of 

L1 solution

Radar + camera

The proposed solution achieves a good balance between the side information from 
the secondary sensor, prior assumed structural information and the underlying 

measurements through the matrix 𝐑.
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Ongoing work …

22

Better ways to design 𝐑 …?Optimize 𝐑

𝐱 *𝐑'" |𝐱| allows for easy incorporation of prior structural 
information and side information through the matrix 𝐑

Novel 
regularization

Current implementation is based on gradient descent. 
We are exploring alternatives based on VAMP

Algorithmic 
improvements

Conclusion

Heuristic design based on Toeplitz matrices. Recipe for design based on camera. Design of 𝐑

Experimental results illustrate improved clutter separation, increased 
resolution and greater sensitivity towards side informationExperiments

The proposed formulation applies to linear problems in communication & navigation.Generic


