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Motivation

I Variational Autoencoders (VAE) 1 and its variations have emerged as a popular
unsupervised learning method for representation learning.

I Large-scale image retrieval requires structured latent representations, i.e. learning discrete
representations.

I Design a product quantized autoencoder and leverage the bottleneck quantizer to enforce
a similarity-preserved representation mapping at the encoder.

1D. Kingma, M. Welling, “Auto-Encoding Variational Bayes”, in ICLR, 2014
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Background: Vector-quantized Autoencoders2

I Encoder-decoder structure

Encoder Quantizer Decoderze(xi) zq(xi)xi x̂i

{µ(1), . . . , µ(zi), . . . , µ(K)}

ze(·) zd(·)

I Notation
I i: Datapoint index i
I x: Datapoint
I ze(xi ): Output of the encoder
I µ(zi ): Latent codeword for input xi
I K : Size of the codebook
I z : Index of the latent codeword
I zq(xi ): Input of the decoder zd(·)
I x̂ : input reconstruction

2A. Oord, O. Vinyals and K. Kavukcuoglu, “Neural Discrete Representation Learning”, in NIPS, 2017
3 / 16



Background: Vector-quantized Autoencoders

I Model for the training data3

I Index-datapoint pairs

p(x) =
N∑

i

p(x |i)p(i) =
N∑

i

δ(x − xi )p(i).

x1 x2 . . .. . .
xN

p(1) p(2) p(N)

I Assume p(i) = 1
N for N training samples.

I Bottleneck Quantizer
I Nearest neighbor index assignment

zi = argmin
j∈[1,··· ,K ]

‖ze(xi )− µ(j)‖2
2.

I Input for the decoder zq(xi ) = µ(zi ).

3A. A. Alemi, I. Fischer, J. V. Dillon, and K. Murphy, ”Deep variational information bottleneck”, in ICLR, 2017
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Entropy-distortion Formulation for Vector-quantized Autoencoders

I Define the information bottleneck distortion measure dIB(I ,Z ) as the Kullback–Leibler
(KL) divergence between p(x |i) and p(x |z)4.

I Define the representational cost as the entropy of the latent index H(Z ).

I Use Lagrangian formulation to exploit the entropy/distortion trade-off

LIB = dIB(I ,Z ) + εH(Z ),

where ε > 0 is the Lagrangian parameter.

4A. Gilad-Bachrach, A. Navot, and N. Tishby, ”An information theoretic tradeoff between complexity and accuracy”,
in COLT, 2003
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Information Bottleneck Distortion Measure

I dIB(I ,Z ) can be decomposed into two terms, where the second term is determined solely
by the given data distribution p(i , x)

dIB(I ,Z ) = KL(p(x |i)‖p(x |z)) =

∫ ∑

z

p(x , z) log
p(z)

p(x , z)
dx −

∫ ∑

i

p(i , x) log
p(i)

p(i , x)
dx .

I A tractable upper bound of dIB can be obtained by replacing the intractable p(x |z) with
a variational approximation q(x |z)

∫ ∑

z

p(x , z) log
p(z)

p(x , z)
dx ≤ −

∑

i

p(i)

∫
p(x |i)

∑

z

p(z |i) log q(x |z)dx .

I With the model q(x |z) = N (x |x̂ , 1), the log-likelihood of q(x |z) is proportional to the
squared difference between the input x and the output x̂ .
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Upper Bound for the Representational Cost

I The representational cost can be upper bounded by the cross entropy between p(z) and
the variational r(z)

H(Z ) ≤ −
∑

z

p(z) log r(z) = −
∑

i

∑

z

p(i)p(z |i) log r(z) = −H(p, r)

I If r(z) is assumed to be uniform, the cross entropy upper bound is a constant that equals
to logK , where K is the number of codewords.

I As a result, the constraint on the learned representations is predetermined by the size of
the embedded codebook.
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Training of the Vector-quantized Autoencoders

I Objective function

LVQ-VAE =
1

N

N∑

i=1

[
log q(x |zq(xi )) + ‖sg(ze(xi ))− zq(xi )‖2

2 + β‖ze(xi )− sg(zq(xi ))‖2
2

]
,

where the third term is the commitment loss which forces the encoder output to commit
to a codeword.

I The stop gradient operator sg(·) is used to separate the gradient update of the
encoder-decoder pair and the codebook

sg(x) =

{
x forward pass

0 backward pass

I log q(x |zq(xi ))): The Gradients of this term only update encoder and decoder.
I ‖sg (ze(xi ))− zq(xi )‖2

2: The gradients of this term only update the codebook.
I ‖ze(xi )− sg (zq(xi )) ‖2

2: The gradients of this term only update the encoder.
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Regularization Effects of the Bottleneck VQ

I Vanilla autoencoder model 5

Encoder Mapping

Decoder Mapping

Input

Latent Space

Output

I Autoencoders with embedded quantizer

Encoder Mapping

Decoder Mapping

Quantization

Input

Latent Space

Discrete Latent Space

Output

5D. E. Rumelhart, G. E. Hinton and R. J. Williams, ”Learning representations by back-propagating errors”, in book:
PDP, 1986
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Regularization Effects of the Bottleneck VQ

I VQ enforces similarity-preserved mapping

Encoder Mapping

Decoder Mapping

Quantization

Input

Latent Space

Discrete Latent Space

Output
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Impact of the Codebook Size

I Smaller codebooks provide low discriminability of the input data. In order to have a small
reconstruction loss, the encoder is forced to ensure that neighboring data points are also
represented closely together in the latent space.

I Larger codebooks provide high discriminability of the input data. To achieve a small
reconstruction loss, the output of the encoder is more likely to be quantized into
codewords that are far away from each other.

Visulization of ze(xi ) with K = 20 Visulization of ze(xi ) with K = 25
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Control the Impact of the Bottleneck VQ

I We introduce a hyperparameter λ > 0 on the updating terms for quantizer and encoder
to control the strength of the vector quantizer

LVQ-VAE =
1

N

N∑

i=1

log q(x |z) + λ
(
‖sg (ze(xi ))− zq(xi )‖2

2 + β‖ze(xi )− sg (zq(xi )) ‖2
2

)

I λ ↑ =⇒ the discriminability of the latent code ↑.
I λ ↓ =⇒ the discriminability of the latent code ↓.

Visualization of ze(xi ) with K = 25 and λ = 0.5
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Product-quantized Autoencoders

I The product quantizer has the advantage of generating large-size codebooks.

I Fast retrieval can be achieved by using lookup tables that store the distance between any
pair of subcodewords.

I Encoderx x̂ze(x)
Decoder

V Q1

V Q2

V QM

...
zq(x)

I The output of the encoder is quantized by M independent sub-vector quantizers (SQ).
I Product quantizer can generate KM codewords.
I After training, each sub-vector quantizer provides a lookup table (LT) with K × K entries.
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Querying Process

V Q1

V Q2

V QM

...

LT1

LT2

LTM

(z(1)
u , z(1))

(z(M)
u , z(M))

...
∑

(z(2)
u , z(2))

Query
Trained
Encoder

I The querying is conducted in the quantized space.

I Distance between query q and data item x can be obtained by M lookup tables LTm .

d(q, x) = LT1

(
z

(1)
u , z(1)

)
+ · · ·+ LTM

(
z

(M)
u , z(M)

)
,

where zu denotes the latent index of the query image, and z the latent index of the given
database image x .
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Retrieval Results

I CIFAR-10 dataset

I Mean average precision mAP-1000 metric

I Each x is represented by 32, 48 or 64 bits.

32 bits 48 bits 64 bits

LSH (Datar et al., 2004) 12.00 12.00 15.07

Spectral Hashing (Weiss et al., 2008) 13.30 13.00 13.89

Spherical Hashing (Heo et al., 2015) 13.30 13.00 15.38

ITQ (Gong et al., 2013) 16.20 17.50 16.64

Deep Hashing (Liong et al., 2015) 16.62 16.80 16.69

PQ-VAE 21.86 22.79 23.42
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Conclusions

I The vector-quantized autoencoder is studied with the information bottleneck framework

I The regularization term for the learned representation is determined by the size of the
embedded codebook.

I We introduce a hyperparameter to control the impact of the vector quantizer such that
we can further regularize the latent representation.

I We introduce the product quantizer into the bottleneck stage of the autoencoder to
facilitate large-scale image retrieval.
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