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Motivation

» Variational Autoencoders (VAE) ! and its variations have emerged as a popular
unsupervised learning method for representation learning.

» Large-scale image retrieval requires structured latent representations, i.e. learning discrete
representations.

» Design a product quantized autoencoder and leverage the bottleneck quantizer to enforce
a similarity-preserved representation mapping at the encoder.

ID. Kingma, M. Welling, “Auto-Encoding Variational Bayes”, in ICLR, 2014




Background: Vector-quantized Autoencoders?

» Encoder-decoder structure

Decoder
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> Notation

> i: Datapoint index i
x: Datapoint
ze(x;): Output of the encoder
u#): Latent codeword for input x;
K: Size of the codebook
z: Index of the latent codeword
z4(x;): Input of the decoder z,4(-)
X: input reconstruction
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2A. Oord, O. Vinyals and K. Kavukcuoglu, “Neural Discrete Representation Learning”, in NIPS, 2017




Background: Vector-quantized Autoencoders

» Model for the training data3
> Index-datapoint pairs

N

= 2 plal)pli) = 3 80 = x)ol)

> Assume p(i) = 4 for N training samples.
» Bottleneck Quantizer
> Nearest neighbor index assignment

zi = argmin ||zo(x;)
JE[L, K]

> Input for the decoder z,(x;) = p(#).

3A. A. Alemi, I. Fischer, J. V. Dillon, and K. Murphy, " Deep variational information bottleneck”
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Entropy-distortion Formulation for Vector-quantized Autoencoders

» Define the information bottleneck distortion measure dig(/, Z) as the Kullback—Leibler
(KL) divergence between p(x|i) and p(x|z)*.

» Define the representational cost as the entropy of the latent index H(Z).

» Use Lagrangian formulation to exploit the entropy/distortion trade-off
Lig = d||3(/, Z) + EH(Z),

where € > 0 is the Lagrangian parameter.

4A. Gilad-Bachrach, A. Navot, and N. Tishby, " An information theoretic tradeoff between complexity and accuracy”,
in COLT, 2003




Information Bottleneck Distortion Measure

» dig(/,Z) can be decomposed into two terms, where the second term is determined solely
by the given data distribution p(i, x)

dx—/Zp/x log ())dx.

» A tractable upper bound of dig can be obtained by replacing the intractable p(x|z) with
a variational approximation q(x|z)

| et 2yin <=3l ) [ p(xli) 3 plzli)og a(xi2)x

» With the model g(x|z) = N(x|X,1), the log-likelihood of g(x|z) is proportional to the
squared difference between the input x and the output X.

a1, Z) = KL(p(x|i)|p(x]2)) / przlog




Upper Bound for the Representational Cost

» The representational cost can be upper bounded by the cross entropy between p(z) and
the variational r(z)

—> p(2)logr(z ZZP i)log r(z) = —H(p, r)

» If r(z) is assumed to be uniform, the cross entropy upper bound is a constant that equals
to log K, where K is the number of codewords.

> As a result, the constraint on the learned representations is predetermined by the size of
the embedded codebook.




Training of the Vector-quantized Autoencoders

» Objective function

N
Lvq-vae = Z log q(x|zq(x))) + llsg(ze(x1)) — 2z(x)3 + Bllze(xi) — sg(zq(x)|3] ,

where the third term is the commitment loss which forces the encoder output to commit
to a codeword.

» The stop gradient operator sg(-) is used to separate the gradient update of the
encoder-decoder pair and the codebook

sg(x) _ {x forward pass

0 backward pass

» log q(x|zq(x;))): The Gradients of this term only update encoder and decoder.
> |Isg (ze(xi)) — zq(xi)||3: The gradients of this term only update the codebook.
> ||ze(x;) — sg(z4(xi)) |3: The gradients of this term only update the encoder.




Regularization Effects of the Bottleneck VQ

» Vanilla autoencoder model °
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» Autoencoders with embedded quantizer
7o) ° Input
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5D. E. Rumelhart, G. E. Hinton and R. J. Williams, " Learning representations by back-propagating errors”, in book:
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Regularization Effects of the Bottleneck VQ

» VQ enforces similarity-preserved mapping
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Impact of the Codebook Size

» Smaller codebooks provide low discriminability of the input data. In order to have a small
reconstruction loss, the encoder is forced to ensure that neighboring data points are also
represented closely together in the latent space.

» Larger codebooks provide high discriminability of the input data. To achieve a small

reconstruction loss, the output of the encoder is more likely to be quantized into
codewords that are far away from each other.

Visulization of z.(x;) with K = 20 Visulization of z.(x;) with K = 25
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Control the Impact of the Bottleneck VQ

» We introduce a hyperparameter A > 0 on the updating terms for quantizer and encoder
to control the strength of the vector quantizer

N

Lvqvae = % > logq(x|z) + A (llse (ze(x1)) — zq(x1)13 + Bllze(x;) — se (24(x)) I3)
i=1

» AT = the discriminability of the latent code T.
» A | = the discriminability of the latent code |.

Visualization of z.(x;) with K =25 and A = 0.5
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Product-quantized Autoencoders

» The product quantizer has the advantage of generating large-size codebooks.

» Fast retrieval can be achieved by using lookup tables that store the distance between any
pair of subcodewords.

» The output of the encoder is quantized by M independent sub-vector quantizers (SQ).
» Product quantizer can generate K™ codewords.
» After training, each sub-vector quantizer provides a lookup table (LT) with K x K entries.

13/16



Querying Process

Trained
Encoder

» The querying is conducted in the quantized space.
» Distance between query q and data item x can be obtained by M lookup tables LT, .

d(g,x) = LT (251),2(1)) f LTy (ZSM)’Z(M)) ’

where z, denotes the latent index of the query image, and z the latent index of the given
database image x.
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Retrieval Results

» CIFAR-10 dataset
» Mean average precision mAP-1000 metric
» Each x is represented by 32, 48 or 64 bits.

32 bits | 48 bits | 64 bits
LSH (Datar et al., 2004) 12.00 12.00 15.07
Spectral Hashing (Weiss et al., 2008) | 13.30 | 13.00 | 13.89
Spherical Hashing (Heo et al., 2015) | 13.30 | 13.00 | 15.38
ITQ (Gong et al., 2013) 16.20 17.50 16.64
Deep Hashing (Liong et al., 2015) 16.62 16.80 16.69
PQ-VAE 21.86 | 22.79 | 23.42
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Conclusions

» The vector-quantized autoencoder is studied with the information bottleneck framework

» The regularization term for the learned representation is determined by the size of the
embedded codebook.

» We introduce a hyperparameter to control the impact of the vector quantizer such that
we can further regularize the latent representation.

» We introduce the product quantizer into the bottleneck stage of the autoencoder to
facilitate large-scale image retrieval.
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