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The design of sampling set (DoS) for bandlimited graph signals
(GS) has been extensively studied in recent years, but few of them
exploit the benefits of the stochastic prior of GS. In this work, we
introduce the optimization framework for Bayesian DoS of ban-
dlimited GS. We also illustrate how the choice of di�erent sampling
sets a�ects the estimation error and how the prior knowledge in-
fluences the result of DoS compared with the non-Bayesian DoS by
the aid of analyzing Gershgorin discs of error metric matrix. Finally,
based on our analysis, we propose a heuristic algorithm for DoS to
avoid solving the optimization problem directly.

Introduction

Consider an N-vertex undirected connected graph G = (V , E ,W),
where V is the vertex set, E is the edge set and W is the weighted
adjacency matrix. The graph Laplacian is defined as L = D − W.
The spectral decomposition of L = VΛVT is L = VΛVT . The graph
Fourier transform (GFT) can be expressed as f = Vf̂ .
Subspace prior: A graph signal can be represented by a linear com-
bination of a subset of {vk}. Explicitly, if f is in the K-subspace,
where K ⊂ V and |K| = K , then it satisfies

f = VKf̂K. (1)

Stochastic prior: f̂K is known to be drawn from the following distri-
bution

p(f̂K) ∝ exp(−(f̂K − µ)TΣ−1
f̂K
(f̂K − µ)), (2)

where µ is the mean of f̂K. Let Σf̂K
= diag(σ2K1

, · · · , σ2KK), then each
diagonal element represents the uncertainty of the corresponding
mean value. The sampling operator Ψ : CN 7→ CM is defined as

Ψi,j =

{
1, j = Si;
0, otherwise. (3)

The observation model is yS = Ψy = Ψ(VKf̂K + w), where w is the
i.i.d noise with zero mean and covariance matrix Σw = σ2wI.
In this paper, the goal is to design a sampling set that can estimate
f̂K by samples on them with the least estimation error. If mi obser-
vations are taken at the i-th vertex, then we define the design as
ηi = mi/M , which is a proportion of vertices being sampled. Let
uT1 , · · · ,uTN be the rows of VK, then Σ∗B is a function of the design η

as

Σ∗B(η) , (σ−2w M

N∑
i=1

ηiuiu
T
i + Σ−1

f̂K
)−1. (4)

Since the prior distribution does not depends on the design η, the
design maximizes the expected utility is the one that maximizes

U1(η) ,
∫∫

log p(f̂K|yS,η)p(yS, f̂K|η)df̂KdyS

= −K
2
log(2π)− K

2
+
1

2
log det(Σ∗B(η))

−1. (5)

The optimization problem can be expressed as follow

max
η

U1(η)

s.t. 0 ≤ ηi ≤ 1,
N∑
i=1

ηi = 1,

Mηi ∈ Z. (6)

Framework

The optimization problem (6) is an intractable combinatorial prob-
lem, but it can be converted to a convex optimization problem by
relaxing the constraint condition Mηi ∈ Z. Instead of solving the
relaxed problem directly, we analyze how η changes the bound of
eigenvalues of (Σ∗B(η))−1 and find a heuristic method to decide η∗

with low complexity.
The optimal η∗ will maximize

log det(Σ∗B(η))
−1

= log det(σ−2w Σ
−1

2

f̂K
(MΣ

1
2

f̂K
VT
Kdiag(η)VKΣ

1
2

f̂K
+ σ2wI)Σ

−1
2

f̂K
)

= log det(σ−2w Σ−1
f̂K
) +

K∑
i=1

log(λB
i ), (7)

where {λB
1 , · · · , λB

K} are the eigenvalues of (MΣ
1
2

f̂K
VT
Kdiag(η)VKΣ

1
2

f̂K
+

σ2wI). In order to analyze the bound of λB corresponding to η∗, we
define

GB(η) ,Mdiag(η)
1
2VKΣf̂K

VT
Kdiag(η)

1
2 + σ2wI,

whose K largest eigenvalues are the same as λB and the remaining
eigenvalues are constants irrelevant to η.
Denoting the rows of (VKΣ1/2

f̂K
) by ũT1 , · · · , ũTN , we define the

Bayesian graph coherence for vertex i as ũTi ũi = ‖Σ1/2

f̂K
VT
Kδi‖22. Since

‖VKΣ1/2

f̂K
‖22 =

∑K
i=1 σ

2
Ki, the sampling proportion in our heuristic

method is given as

η∗i =
ũTi ũi∑K
i=1 σ

2
Ki

. (8)

Algorithm

The GS lies in the column space of VK with K = {10, 20, 30}. The
sampling budget M = 10 and the samples are noisy with additive
i.i.d. Gaussian noise with σ2w = 0.5. The mean of f̂K is µ = 13×1 and
the covariance matrix is Σf̂K

= diag(1, 0.5, 0.1).
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