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Introduction

▪ Compressive Sensing: A sensing and reconstruction framework that 
allows us to recover a structured signal from a small number of 
linear/nonlinear measurements. 

▪ Examples: Inpainting, denoising, super-resolution, spatial compression

▪ General Problem Formulation: Suppose we are given noisy compressive 
measurements of a video sequence as

𝐲𝐭 = 𝐀𝐭𝐱𝐭+ 𝐞𝐭

where 𝐱𝐭 ∈ ℝ𝑛 is unknown 𝑡𝑡ℎ frame, 𝐀𝐭 ∈ ℝ𝑚×𝑛 is the measurement 
operator, 𝐲𝐭 ∈ ℝ

𝑚 is measurement vector, and 𝐞𝐭 ∈ ℝ𝑚 is 
measurement noise for 𝑡𝑡ℎ frame of the video sequence.

▪ Aim: To recover the unknown video sequence 𝐱𝐭 given the 𝒚𝐭 and 𝐀𝐭.

Generative Model for Representation

• An under-determined system has infinitely many possible solutions.

• To recover the unknown signal we must restrict the solution space to a
set 𝑺 ⊂ ℝ𝑛 that captures some known structure 𝐱𝐭 is expected to obey.

• In a generative prior setup, we assume that the target image lies in the
range of a trained generative model. Generative model, 𝐺(⋅) is a
function that maps a latent variable 𝐳 ∈ ℝ𝑘 to the image 𝐱 ∈ ℝ𝑛.

• The compressive sensing problem can then be formulated as the
following constrained optimization problem [1]:

min
𝐳
𝐭

𝑙𝑜𝑠𝑠 𝐲𝐭 , 𝐀𝐭𝐱𝐭 𝑠. 𝑡. 𝐱𝐭 = 𝐺γ(𝐳𝐭)

where γ denotes the parameters of the generator.

Trained vs Untrained Model

• In generative prior approach we often assume that we have a trained
generator which can well approximate the target image. But we cannot
find trained generator for every application in practice.

• Recent research shows that convolutional generative structures alone
provide good prior for reconstructing natural images [4].

• Based on this finding, we use untrained generator as a prior for solving
video compressive sensing by optimizing over latent codes and
network weights.
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Experimental Setup

• Datasets: Different video sequences from KTH dataset resized to 64×64
and UCF101 dataset resized to 256×256.

• Latent code dimension: k = 256 for 64×64 and k = 512 for 256×256 video
sequences. Rank=4 as low-rank.

• Optimizer: Gradient descent for latent code update, Adam for network
parameter update.

• Generator: We used generator architecture from DCGAN [5].

Joint Optimization with Low-rank Constraint

• As the generator is usually a continuous function, joint optimization will 
allow latent codes to reflect the visual similarity  of the video frames.

• We can further impose low-rank constraint on latent codes to represent 
the latent codes corresponding to the video sequence more concisely. 
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Algorithm pseudocode: Generative model for low-rank representation and
reconstruction of videos

Figure 1. DCGAN [5] generator structure used in our experiments. 
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Figure 2. An illustration of different generative priors (a) Optimizing zt of a trained
generator. (b) Jointly optimizing zt and γ enables recovery of a larger range of images.
(c) Joint Optimization + Low-rank constraint potentially explain other structures in data.

Figure 3. Joint optimization (untrained generator) vs latent code
optimization (trained generators: Generator1 and Generator2).
Generator1 is trained on the same dataset as the test set,
Generator2 is trained on CIFAR10. Frame size is 64×64.

Figure 5. Reconstruction performance 
comparison for different algorithms for 
Handwaving sequence. 
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Figure 4. Reconstruction (Archery) for different
algorithms (joint opt., joint opt +low rank., TVAL3
[2] and deep decoder [3]) for inpainting problem.
Frame size is 256×256.


