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ABSTRACT

We investigate if the random feature selection approach proposed
in [1] to improve the robustness of forensic detectors to targeted at-
tacks, can be extended to detectors based on deep learning features.
In particular, we study the transferability of adversarial examples
targeting an original CNN image manipulation detector to other de-
tectors (a fully connected neural network and a linear SVM) that rely
on a random subset of the features extracted from the flatten layer of
the original network. The results we got by considering three image
manipulation detection tasks (resizing, median filtering and adap-
tive histogram equalization), two original network architectures and
three classes of attacks, show that feature randomization helps to
hinder attack transferability, even if, in some cases, simply chang-
ing the architecture of the detector, or even retraining the detector is
enough to prevent the transferability of the attacks.

Index Terms— Adversarial multimedia forensics, adversarial
machine learning, deep learning for forensics, image manipulation
detection, randomization-based defences, secure classification.

1. INTRODUCTION

The development of secure image forensic tools achieving good per-
formance even in the presence of an adversary aiming at impeding
the analysis is not an easy task, given the weakness of the traces
the forensic analysis relies on [2]. When the attacker has a per-
fect knowledge about the forensic algorithm (white-box scenario) or
enough information about it, powerful Counter-Forensic (CF) tech-
niques can be devised, by introducing a limited distortion into the
attacked image. This is even more the case with Deep Learning
(DL)-based forensics, due to the vulnerability of DL techniques to
adversarial examples [3], small quasi-imperceptible perturbations of
the input images causing incorrect results [4–6].

A possibility to improve the general robustness against CF, with-
out specializing the forensic algorithm against a particular CF tool
(as it is the case with adversary-aware approaches, see for instance
[7] for machine learning-based forensics and [3] for general DL ap-
plications), is to resort to randomization strategies [6]. In fact, many
randomization approaches have been considered addressing standard
machine learning tools and, more recently, DL architectures. In [1],
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the authors propose to randomize the selection of the feature space
according to a secret key to prevent the attacker from gaining full
knowledge about the system. In this way, the analyst exits the white-
box scenario [8] thus decreasing the success rate of the attack. The
effectiveness of Random Feature Selection (RFS) has been proven
in [1] both theoretically, under simplifying assumptions, and in prac-
tice, where it is experimentally validated by focusing on image ma-
nipulation detection and the SPAM feature set [9]. With regard to
DL techniques, most of the methods proposed so far focus on test
time randomization [10], where the input layer of the classifier is
randomized at test time. A multi-channel architecture, where each
channel introduces its own randomization in a special transformed
domain based on a secret key, has recently been proposed in [11].

In this paper, we extend the random feature selection approach
described in [1] to the case of CNN-based detection, where the fea-
tures are extracted by a convolutional neural network, to see if and
up to which extent the approach can be used to combat adversarial
examples. Such extension is non trivial also because adversarial at-
tacks against CNNs are very powerful (especially the gradient-based
ones, exploiting gradient back-propagation) and very different from
the attacks carried out against SVM classifiers. In the following, we
refer to the new scheme as Random Deep Feature Selection (RDFS).
To perform the classification based on the randomly selected deep
features, we consider two types of classifiers, a Fully Connected
network and a linear SVM. With regard to the FC network, it cor-
responds to a retrained version of the last part (the FC layers) of
the original CNN targeted by the attack. To be effective, RDFS
should improve the security of CNN-based detectors against adver-
sarial examples, at the expense of a negligible loss of performance
in the absence of attacks. The experiments we carried out on several
image manipulation detection tasks, considering two state-of-the-art
CNNs, reveal that the dangerousness of adversarial examples can
indeed be mitigated by the proposed RDFS scheme. However, the
degree of effectiveness of RDFS depends on the detection task, the
kind of attack and the network. In fact, in several cases, the mis-
match between the original classifier targeted by the attack and the
one used for classification (in our case an SVM or a retrained FC
classifier) decreases by itself the attack success rate, thus making
feature randomization unnecessary.

2. RANDOM DEEP FEATURE SELECTION (RDFS) FOR
SECURE IMAGE CLASSIFICATION

As we said, our goal is to extend the random feature selection
method developed in [1] for model-based and standard ML-based
detectors based on statistical and handcrafted features, to the case
of CNN-based forensic detectors. The security model considered in
this paper is depicted in Fig. 1. Given an original CNN detector, the
CNN is only used as feature extractor. Let N be the dimensionality
of the set of features. Then, K features (K < N ) are randomly se-
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Fig. 1. Scheme of the proposed RDFS detector.

lected among the N features, according to a secret key. The reduced
set of features obtained in this way is used to train another detector,
for instance, a Neural Network or an SVM classifier. Obviously,
the same scheme is applied during both training and testing, with
the same secret key. Without loss of generality, we let H0 be the
hypothesis that the image is original, and H1 the hypothesis that
the image has been tampered with. The adversarial attack is carried
out in the pixel domain, as shown in Fig. 1. We assume that the
attacker does not know the existence of the randomization strategy
and then he targets the original CNN classifier (hence implementing
a so called vanilla attack) [10,12]. Also, we assume that the attacker
wants to pass off a manipulated image as an original one, i.e., to
induce the network to decide in favor ofH0 whenH1 holds, causing
a false negative error, while he is not interested in attacking in the
opposite direction. At the same time, the attacker wants to minimize
the distortion introduced in the image as a consequence of the attack.

As mentioned in the introduction, the random feature selection
enforces a limited knowledge scenario for the attack. In particular,
the attacker is not aware of the randomization defence mechanism
(and, even if he is, he does not know the subset of features used by
the detector and their number K). Moreover, he has only a partial
knowledge of the RDFS architecture of the detector. By following
a terminology of DL [8], we can say that, due to random feature se-
lection, the attack is no more carried out in a white-box setting; the
random feature selection induces a so called semi white-box scenario
for the attack. The exact amount of knowledge available to the at-
tacker depends on the specific RDFS scheme considered, that is, on
the specific architecture of the detector. We considered two different
scenarios: the case of a Fully-Connected (FC) network detector, and
the case of a linear SVM detector.

2.1. RDFS detection based on a Fully-Connected (FC) network

In this case, the RDFS detector is implemented by retraining the FC
layers of the original CNN. Given the selected random feature set
of dimensionality K (K < N ), the same FC structure of the orig-
inal network is re-trained considering only the K input nodes. The
number of layers depends then on the original CNN architecture.
Therefore, when the full feature set is considered for the detection
(K = N ), there is no mismatch in the architecture between this FC
network and the classification architecture of the original CNN tar-
geted by the attack. However, even in this case, the attack is not
completely white-box, since, in the setup considered for our experi-
ments, a different training set (more precisely, a subset of the original
set) is used to train the detector.

2.2. RDFS detection based on SVM

In this case, an SVM architecture is considered to implement the
detector. Then, in contrast to the previous case, the detector is differ-

ent from the classification structure of the original CNN, even when
the full feature set is considered (K = N ). The amount of attack
knowledge is less than in the previous case, since the attacker does
not know the architecture of the detector, in addition to the training
data.

3. APPLICATION TO MANIPULATION DETECTION

In this paper, we are interested in evaluating the performance of the
RDFS approach and assess the factors that affect its effectiveness
for image manipulation detection applications. Specifically, we run
several experiments by considering three different manipulation de-
tection tasks. For each of them, two different state-of-the-art CNN
architectures were considered. The security of the RDFS approach
was assessed by considering three different types of attacks.

3.1. Original CNN Detectors

We considered three different detection tasks, namely the detec-
tion of image resizing (downsampling, by a 0.8 factor), median
filtering (by a 5 × 5 window), and adaptive histogram equaliza-
tion (AHE), which applies contrast enhancement on a local basis
(the Contrast-Limited implementation of AHE, namely, CL-AHE,
was considered). Concerning the network architectures, we consid-
ered the network in [13] (recently extended in [14]), referred to as
BayarNet2016, and the one in [15], referred to as BarniNet2018.
BayarNet2016 was originally proposed for the detection of some
standard manipulation detection tasks and consists of 3 convolu-
tional layers followed by batch normalization, 3 max-pooling layers,
and 2 FC layers. As a main feature of BayarNet2016, the filters of
the first layer (with 5× 5 receptive field) are constrained by enforc-
ing a high-pass nature of the filters, and then residual-based features
are extracted. BarniNet2018 was proposed for the more difficult
task of generic contrast adjustment detection (the accuracy achieved
by BayarNet2016 on this task is quite low). The main features of
BarniNet2018, making it significantly different from BayarNet2016,
are that it is pretty deep (9 convolutional layers instead of 3), and
no pre-filtering is applied by constraining the filters of the first layer
(then the features are automatically learned by the networks from
the image pixels). We refer to [13] and [15] for the details on the
network structures.

3.2. Reduced (Deep Feature) Detectors

For each manipulation task, we built our reduced feature detectors as
detailed in the following. For a given choice of the random selection,
the K features were extracted from the flatten layers of the CNNs.
Then, we trained the original FC architecture of BayarNet2016 and
BarniNet2018 with K input nodes, and a linear SVM classifier fed
with the K input features. Both the FC networks and the SVM were
trained on a subset of images of the training set used to train the orig-
inal networks. Regarding the structure of the two FC networks, we
have 2 layers with 4096 hidden nodes each for BayarNet2016, and
only one layer consisting of 250 hidden nodes for BarniNet2018. For
the SVM, a Gaussian kernel was adopted, and the kernel parameters
were determined by 5-fold cross-validation.

To measure the performance of the reduced set detectors, for
a given size K of the reduced feature set, the experiments were re-
peated (both training and testing) 50 times, each time with a different
randomly chosen feature subset.



3.3. Adversarial Attacks

As we said, the attack is targeted to the original CNN model. In
all the cases, white-box attacks are run against the original CNN
trained models, i.e., assuming that the attacker knows everything
about the model. In our experiments, we considered three gradient-
based, iterative, attacks. Specifically, the adversarial examples were
built by relying on the following algorithms: the original box con-
strained L-BFGS, namely L-BFGS-B (BFGS for short) by Szegedy
et al. [16], the Fast Gradient Sign Method, namely FGSM, origi-
nally proposed in [3], and the Projected Gradient Descent (PGD)
attack, originally proposed in [17]. The Foolbox toolbox [18] was
used to implement the attacks. L-BFGS [16] looks for an approx-
imately optimum solution of the optimization problem the attack
has to solve, to find the minimal adversarial perturbation that makes
the prediction change (standard gradient-descent algorithm). For the
FGSM attack, we considered the refined iterative version (I-FGSM)
described in [19]. At each iteration i + 1, an adversarial perturba-
tion is obtained by computing the gradient of the output with respect
to the input image and considering its sign multiplied by a (nor-
malized) strength factor ε. Formally, given an image X , Xi+1 =
Xi+ε(max(Xi)−min(Xi))·sign(∇XJθ(Xi, y)), where Jθ(X, y)
is the cross-entropy cost function of the neural network with parame-
ters θ, and y is the ground truth class of X . The algorithm is applied
iteratively until an adversarial image is obtained (that is, an image
which is misclassified by the network), for a maximum number of
steps S. Several values of ε are considered, i.e. ε ∈ E; the value
which minimizes the distortion of the final attacked image with re-
spect to the original one is eventually selected. PGD is about find-
ing the perturbation that maximizes the loss function under some
restrictions regarding the introduced l∞ distortion. Specifically, at
each iteration i + 1: first the image is updated (similarly to FGSM)
as Xi+1 = Xi + ε(max(Xi) − min(Xi)) · sign(∇XJθ(Xi, y))
for some ε called step size; then, the pixel values are clipped to en-
sure that they remain in the α-neighbourhood of the original im-
age: accordingly, the image is refined by computing [Xi+1]r,c =
clip([Xi+1]r,c, {−α,+α}) for pixel (r, c). Due to the clipping, this
attack may result in a highly suboptimal solution in some cases. A
binary search can be performed over ε and α to optimize the choice
of the hyperparameters, using the input values only for the initializa-
tion.

4. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we first describe the experimental setup for our ex-
periments, then we present and discuss the results of the tests we
carried out in the various settings.

4.1. Experimental setup

For our experiments, we considered the 8156 uncompressed camera-
native (.tiff) images from RAISE dataset [20] with size 4288× 2848.
The images were split into training, validation, and test sets and then
processed to create the images for the H1 class, i.e., resizing, me-
dian, and adaptive histogram equalization (CL-AHE). For all our ex-
periments, the images were converted to gray-scale.

To build the original CNNs for the three detection tasks, we
considered 100.000 patches for training, 3000 and 10.000 for val-
idation and testing respectively, per class, for BayarNet2016: for
BarniNet2018, 500.000 patches were considered for training, 5000
and 10.000 for validation and testing respectively, per class. In or-
der to use many images from the dataset and then enforce patch di-

versity, a maximum number of 100 patches were selected randomly
from each image. For both networks, the input patch size was set
to 64 × 64. A number of 40 epochs was considered to train the Ba-
yarNet2016 models, while, by following [15], 4 epochs were consid-
ered for BarniNet2018. For training the networks, we used the Adam
solver with learning rate 10−4 and momentum 0.99. The batch size
for training was set to 32. The accuracies achieved by the trained
models in the absence of attacks are: i) BayarNet2016: 91.30% for
resizing, 98.83% for median filtering, and 90.45% for CL-AHE; i)
BarniNet2018: 95.05% for resizing, 99.73% for median filtering,
and 98.30% for CL-AHE.

In order to build the RDFS detectors, both the FC networks and
the SVM were trained on a subset of 20.000 patches per class se-
lected from the original training set of images, and validated on 1000
patches per class, selected from the validation set used for the orig-
inal CNN. Regarding the training procedure for the reduced feature
FC networks, we used the following setting: learning rate of the
Adam solver set to 10−5 and the momentum to 0.99 for a maximum
number of 50 epochs, with an early stop condition that ends training
when the validation loss changes less than 10−3 in the last 5 epochs
(with a validation batch size of 100). The number of reduced fea-
tures K considered in our experiments (for training and testing) for
both the FC networks and the SVM is: 5, 10, 30, 50, 200, 400, 600,
and the full feature caseK = N . The full feature set size (size of the
flatten layer of the original CNN) is N = 1728 with BayarNet2016
and N = 3200 with BarniNet2018. When BarniNet2018 is used as
original CNN, the caseK = 600 is not considered, to save time. For
every value ofK, in fact, we need to train 50 models (SVM and FC),
one for every choice of the random set takes time. However, as con-
firmed by the results with BayarNet2016, the most interesting cases
are those with lower values of K (order of tens). For the tests in the
absence of attacks, we considered 4000 patches per class, taken from
the original test set.

With regard to the attacks, for L-BFGS, we used the default at-
tack parameters [18]. For FGSM, the number of steps S is fixed
to 10 (default), the best strength is searched in the range E = [0 :
0.001, 0.1]. PGD is applied considering the following setting: ε =
0.05, and α = 0.3, binary-search = ’True’1. The above setting does
not work for the CL-AHE detection task (the adversarial image can-
not be found in most of the cases); for that task, the following setting
has been considered: ε = 0.025, and α = 0.01, binary-search =
’False’. As we said, we only applied the attack to images of the H1

class. In all the cases, the performance in the presence of attacks is
evaluated on 500 adversarial examples, obtained by attacking a sub-
set of the 4000 patches of the H1 class. We checked that, with the
above setting, all the attacks are successful against the target origi-
nal CNN, the success rate being in the range [0.98:1]. The average
PSNR for the attacked samples is between 40 and 70dB (often above
60 dB), the exact value depending on the attack type, the target net-
work and the detection task.

4.2. Results of FC-based classification

The results we have got for this case are reported in Table 1 and 2 for
the case of BayarNet2016 and BarniNet2018, respectively. By in-
specting Table 1 we observe that, when the attack works well against
the FC network with K = N (last line of the tables), that is, when
the attack targeted to the original BayarNet2016 model can be suc-
cessfully transferred to the full feature FC detector, the proposed
randomization strategy helps and a significant gain in the Accuracy

1We refer to [18] for the exact technical meaning of this parameter.



can be achieved, at the expense of a minor Accuracy reduction in the
absence of attacks. Specifically, the Accuracy gain is about 20-30%
for K = 30 and 30-50% for K = 10, while the accuracy reduction
in the absence of attacks is only 2-4%, the exact value depending
on the task (with the exception of the resizing detection task with
BarniNet2018, where a more significant loss of performance is ex-
perienced without attacks, see Table 2). In some cases, however, it
happens that the Accuracy is already large also for K = N , i.e.,
the attack fails against the full feature FC detector, meaning that the
attack targeted to the original CNN BayarNet2016 cannot be trans-
ferred to the full feature FC detector. Stated in another way, just
re-training the FC network on a different set (a subset of the origi-
nal training in our case) decreases by itself the attack success rate.
This behavior confirms the findings in [21], showing that, at least
for image forensic applications, the adversarial examples are gener-
ally non-transferable, in contrast to what happens in typical pattern
recognition applications [22].

A similar behavior can be observed in Table 2, where we see
that forK = N the attack is even less effective than before (hence it
is less transferable). Then, again, in these cases, the randomization
defence is not necessary (e.g. for the case of PGD, the Accuracy
with K = N is 89.7% for resizing and 85.3% for median filtering).
In the other cases, i.e., when the Accuracy with K = N is low, the
randomization approach increases the Accuracy by 20-30%.

Table 1. Accuracy (%) of the RDFS detector based on FC network,
for the case of BayarNet2016 [13].

Resize Median Filtering CL-AHE

K No

Attk
PGD FGSM BFGS

No

Attk
PGD FGSM BFGS

No

Attk
PGD FGSM BFGS

5 91.0 69.9 61.6 65.6 88.7 79.8 51.0 73.0 73.0 87.4 89.2 88.0
10 95.0 68.0 55.7 62.0 93.2 80.6 44.5 67.1 78.0 88.0 89.1 78.6
30 97.0 58.5 43.4 48.8 96.8 79.7 30.8 56.1 80.1 89.5 90.7 64.7
50 97.4 52.0 35.9 40.1 97.7 80.0 24.6 53.5 80.7 90.2 91.3 56.3
200 97.8 31.0 13.7 17.4 98.7 77.6 10.8 44.8 81.5 91.6 94.0 42.8
400 97.7 20.7 7.2 9.1 98.8 76.6 7.5 42.6 81.3 91.8 94.5 41.0
600 97.9 16.4 5.4 7.1 98.9 80.5 6.0 43.0 80.5 91.5 93.8 36.6
N 98.0 31.5 0.6 20.3 99.0 81.9 4.3 39.7 80.5 91.8 93.9 35.1

Table 2. Accuracy (%) of the RDFS detector based on FC network,
for the case of BarniNet2018 [15].

Resize Median Filtering CL-AHE

K No

Attk
PGD FGSM BFGS

No

Attk
PGD FGSM BFGS

No

Attk
PGD FGSM BFGS

5 74.4 67.7 58.7 60.7 97.2 83.3 48.3 77.1 87.4 47.2 63.7 47.0
10 78.6 71.9 59.9 63.0 98.8 86.1 44.3 79.2 91.1 55.6 68.8 48.3
30 92.7 81.8 65.5 70.7 99.4 88.5 30.0 79.6 94.3 56.7 76.3 39.8
50 96.8 85.2 66.8 73.0 99.6 87.4 21.9 76.6 95.1 50.6 80.0 35.3
200 99.7 88.0 69.6 77.9 99.6 88.6 17.0 76.2 96.9 48.5 83.0 26.0
400 99.8 89.3 71.8 80.0 99.6 88.1 15.6 75.6 97.1 30.1 83.6 21.0
N 100 89.8 75.2 81.2 99.7 85.2 13.7 71.3 98.2 33.5 34.0 26.2

4.3. Results of SVM-based classification

The results we have got for this case are reported in Table 3 and 4
for the case of BayarNet2019 and BarniNet2018, respectively.

In this case, expectedly, the mismatch in the architecture de-
creases further the success rate of the attack against the full feature
SVM detector (case with K = N ), i.e. it increases the Accuracy,
without even resorting to randomization. However, when this is not
the case, the randomization helps: for instance, for BayarNet2016
under the BFGS attack, the Accuracy passes from 39.4 (for the re-
sizing task), 5.0 (for the median filtering task) and 38.6 (for the CL-
AHE task), to 69.6%, 50.7%, and 70.5 % respectively, with a per-
formance loss without attacks of 2.2% in the Accuracy. Using less
features, e.g K = 10, the Accuracy against the attacks can be im-

proved further in general, though at the expense of a higher loss of
performance without attacks.

Table 3. Accuracy (%) of the RDFS detector based on SVM, for the
case of BayarNet2016 [13].

Resize Median Filtering CL-AHE

K No

Attk
PGD FGSM BFGS

No

Attk
PGD FGSM BFGS

No

Attk
PGD FGSM BFGS

5 79.6 59.0 58.0 58.7 80.3 69.8 47.5 66.1 74.4 90.7 89.2 87.3
10 87.0 60.5 58.9 59.9 87.6 70.8 33.8 63.2 80.4 90.7 90.4 81.5
30 92.8 70.9 70.1 69.6 94.5 63.3 19.1 50.7 80.5 89.6 90.9 70.5
50 94.3 75.5 75.6 75.0 96.2 66.8 13.1 42.0 80.7 89.8 91.0 62.3

200 95.5 65.0 63.9 64.2 97.7 57.2 3.8 22.1 80.0 91.0 93.4 43.7
400 94.8 43.4 66.4 28.1 98.0 50.3 1.9 14.9 79.7 91.2 93.8 39.7
600 95.4 47.9 25.2 32.3 98.1 45.0 1.3 11.0 79.4 91.3 94.2 40.1
N 95.1 58.4 31.0 39.4 98.0 29.6 0.6 5.0 79.5 91.8 95.0 38.6

Table 4. Accuracy (%) of the RDFS detector based on SVM, for the
case of BarniNet2018 [15].

Resize Median Filtering CL-AHE

K No

Attk
PGD FGSM BFGS

No

Attk
PGD FGSM BFGS

No

Attk
PGD FGSM BFGS

5 74.8 73.6 65.4 66.4 97.2 83.1 46.3 78.1 88.3 59.6 64.8 50.7
10 82.7 78.1 68.0 69.2 98.3 85.7 42.0 80.3 91.2 67.0 74.5 58.0
30 95.1 86.1 72.8 76.0 99.3 86.1 25.8 77.2 93.4 63.4 86.5 54.8
50 97.5 88.2 73.2 77.2 99.3 84.1 18.7 74.0 94.5 56.7 90.3 46.7

200 99.6 88.5 68.1 75.7 99.6 88.2 15.9 75.2 96.4 36.4 94.0 24.7
400 99.7 90.0 67.6 77.7 99.6 86.6 13.5 70.1 97.0 26.1 94.1 16.1
N 99.8 90.6 66.2 83.8 99.7 86.4 12.0 69.8 97.3 22.3 94.6 11.0

5. CONCLUDING REMARKS

Following [1], we have evaluated the feasibility of using deep feature
randomization to improve the robustness of CNN detectors against
adversarial examples by hindering the transferability of the attacks.
Our experiments carried out in a wide variety of scenarios reveal
that feature randomization somewhat helps in decreasing the trans-
ferability of the attacks, hence improving the security of the detec-
tion, even if, in some cases, the mismatch in the architecture between
the original CNN and the new detector is enough to prevent the trans-
ferability. Future work will focus on increasing the strength of the
attacks to improve the transferability of the adversarial examples.
Given the complexity of the decision boundary learnt by the CNNs,
this is not an easy task. The amount of distortion introduced in the
image by the attack, or the value assumed by the decision function,
in fact, represent only an inaccurate proxy for the attack strength,
since controlling the amount of distortion (e.g., by letting the gradi-
ent descent continue until a limit PSNR is reached for the attack), or
setting a safe margin on the decision function for the attack, do not
necessarily result in a stronger attack. Another direction for future
research is to investigate a scenario more favourable to the attacker,
where the attacker is aware of the randomization-based defence. In
particular, we can assume that the attacker is aware of the feature
selection mechanism and the architecture of the detector (only the
secret key is unknown), and then can run a more powerful attack,
for instance by targeting an expected version of the classifier (in a
way that resembles the Expectation over Transformation (EOT) at-
tack [12]). From the defender’s side, the use of a different FC layer
or an SVM with a different kernel could be considered for the clas-
sification. Moreover, one could try to improve the effectiveness of
the RDFS scheme by performing feature regularization during the
training of the original CNN, in such a way to reduce the gap with
the theoretical analysis carried out in [1] about the effectiveness of
the feature selection strategy. Finally, it would be also interesting to
consider the application of the RDFS scheme in a black-box attack
scenario, and assess the information leakage on the secret key in this
case.
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