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ABSTRACT

The V-Net based 3D fully convolutional neural networks have
been widely used in liver volumetric data segmentation. How-
ever, due to the large number of parameters of these networks,
3D FCNs suffer from high computational cost and GPU mem-
ory usage. To address these issues, we design a lightweight
V-Net (LV-Net) for liver segmentation in this paper. The pro-
posed network makes two contributions. The first is that we
design an inverted residual bottleneck block (IRB block) and
a 3D average pooling block and apply them to the proposed
LV-Net. Compared with vanilla convolution, depth-wise con-
volution and point-wise convolution employed by the IRB
block can not only reduce the number of parameters signif-
icantly, but also extract features sufficiently well by decou-
pling cross-channel corrections and spatial correlations. The
second is that the LV-Net employs 3D deep supervision to im-
prove the final loss function in training phase, which makes
the proposed LV-Net acquire a more powerful discrimination
capability between liver areas and non-liver areas. The pro-
posed LV-Net is evaluated on public LiTS dataset, and exper-
iments demonstrate that the proposed LV-Net is superior to
popular 2D and 3D networks in terms of segmentation per-
formance, parameter quantity and computational cost.

Index Terms— deep learning, image segmentation, 3D
fully convolutional neural network, network compression

1. INTRODUCTION

As automatic image segmentation algorithms can help doc-
tors to improve liver disease diagnosis and develop a better
treatment plan, liver segmentation remains one of the hotspots
in the field of medical image analysis. Before the appear-
ance of deep learning [1], three kinds of popular image seg-
mentation algorithm are often used for liver segmentation:
grayscale value-based algorithms [2][3][4], statistical shape
model-based algorithms [5][6][7], and texture feature-based
algorithms [8][9]. However, liver has a complex and variant
shape, and it has a similar grayscale value with neighboring
organs in CT images; thus it is very difficult to extract fea-
tures of liver using those algorithms. With the development

of deep learning techniques [10], end-to-end liver segmenta-
tion attracts the attention of researchers. As deep learning
can learn high-layer semantic features of liver from abdom-
inal images, CNNs based on deep learning can provide ex-
cellent segmentation results. Currently, there are two types
of popular deep convolutional neural network used for liver
segmentation, the first is 2D networks such as U-Net [11] and
CE-Net [12], the second is 3D networks such as 3D U-Net
[13] and V-Net [14].

Although deep learning can achieve better liver segmen-
tation in the way of end-to-end, it causes some new problems
that limit the clinical deployment of deep learning. As liver
slices constitute a volumetric data, it is difficult to utilize 3D
spatial information of liver slices when a 2D CNN is used
for liver segmentation. Compared with 2D CNNs, the 3D
CNNs can utilize the spatial information among neighboring
liver slices effectively; therefore, they achieve better segmen-
tation results. Unfortunately, these 3D CNNs require a large
number of network parameters and high computational cost.
Researchers usually must use image patch or image zoom-
ing to train these 3D CNNs, which is a tradeoff between seg-
mentation performance and hardware resource requirements.
Therefore, how to remove redundant parameters and reduce
the computational cost effectively of 3D CNNs are important
when we extend 3D CNNs to practical clinical application.

To address these issues mentioned above, we propose a
lightweight V-Net (LV-Net) for liver segmentation. The pro-
posed network is more practical since it requires less memory
usage while maintaining liver segmentation accuracy. Exper-
iments demonstrate that the proposed LV-Net is superior to
popular CNNs since it provides better segmentation results
with less memory usage.

2. THE PROPOSED NETWORK

V-Net is a very popular 3D fully convolutional neural net-
work in medical image segmentation. It has a symmetric
structure, and it is composed of an encoder and a decoder.
The encoder is used to extract useful features from input data
and the decoder is used to reconstruct the features to obtain
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Fig. 1: The detailed structure of LV-Net.

the final segmentation result. V-Net employs long range skip
connections between encoder and decoder at symmetric lay-
ers to fuse low-layer features and high-layer features together,
which improves the final predictions. Both encoder and de-
coder depend on vanilla 3D convolution. The design of V-net
causes large memory usage and high computational cost.

To address those drawbacks of V-Net, we propose a
lightweight V-Net for liver segmentation. The proposed LV-
Net shown in Fig. 1 has two advantages: (1) the LV-Net only
requires low memory usage since it removes a large number
of redundant parameters existing in the V-Net; and (2) the
LV-Net provides better segmentation results than popular 2D
and 3D networks due to the employment of deep supervision.

2.1. Network compression

According to Fig. 1, we use inverted residual bottleneck
(IRB) block [15] instead of vanilla convolution to construct
encoders and decoders of LV-Net. The IRB block is com-
posed of depth-wise convolution and point-wise convolution.
Fig. 2a shows the detailed architectures of the IRB block.

In the V-Net, 5 × 5 × 5 convolutional kernels are used
to extract spatial-dimension features and channel-dimension
features. But in a IRB block, the input feature maps are firstly
expanded on channels via the operation of 1 × 1 × 1 point-
wise convolution; secondly, the operation of 5× 5× 5 depth-
wise convolution is used to extract spatial-dimension features;
thirdly, the 1×1×1 point-wise convolution is used to squeeze
feature channels; finally, the composition of residual feature
maps and the input feature maps is considered as the final
output feature maps. Compared with the bottleneck block of
ResNet [16], both the entrance and exit of the IRB block are
narrow, but the middle part of the IRB block is wide. There
are two advantages of the design of IRB block: (1) the IRB
block can extract more features from input feature maps at the

Table 1. Comparison of the efficiencies of different networks.

Models IRB block Vanilla 3D Convolution

expansion point-wise

convolution (1× 1× 1× C)× C × ε

(k × k × k)× C × Cdepth-wise convolution (k × k × k × 1)× C × ε

contraction point-wise

convolution (1× 1× 1× C × ε)× C

total
k3Cε+ 2C2ε

64,768 (12.65 %)

k3C2

512,000 (100 %)

input stage; and (2) the IRB block can remove redundant fea-
tures by squeezing the channel dimension of output feature
maps at output stage. Besides, the width of the middle part
of IRB block is decided by expansion rate ε. The parameter
ε is an important hyper-parameter that can adjust the model
capacity of the network. Tuning the ε reasonably can avoid
over-fitting phenomenon and make LV-Net fit other segmen-
tation tasks flexibly. Due to the limitation of GPU memory,
in this paper, we fix ε to 4 to get the best performance.

As the vanilla convolution achieves the united mapping of
feature maps on spatial correlations and cross-channel corre-
lation, spatial features and channel features are often coupled
together [17] at the output feature maps of vanilla convolu-
tion, which limits the feature extraction of subsequent con-
volutional layers. The IRB block is a variant of depth-wise
separable convolution, and it has stronger capability of fea-
ture extraction since the IRB block can overcome the cou-
pling between spatial features and channel features via depth-
wise convolution and point-wise convolution. Besides, as the
point-wise convolution and depth-wise convolution employ
1 × 1 × 1 kernels, k × k × k kernels, respectively, the IRB
block reduces of the number of network parameters. For Fig.
2b, Table 1 shows the comparison of number of network pa-
rameters between one IRB block and one vanilla convolution
layer, where k × k × k is the size of a kernel, k = 5, C
is the number of channels, C = 64, and ε = 4. It is clear
that the IRB block requires fewer parameters (12.65%) than a
convolution layer of V-Net.

To compress the size of V-Net further, we use the compo-
sition of point-wise convolution and average pooling instead
of vanilla convolution in the stage of down-sampling, and use
point-wise convolution and trilinear interpolation instead of
deconvolution in the stage of up-sampling. As there is no
trainable parameter in pooling layers and trilinear interpola-
tion layers, the proposed down/up-sampling module can re-
duce the number of network parameters. Fig. 2b shows the
detailed architecture of our down-sampling module, where
the parameter number of LV-Net is 2C2 while V-Net is 16C2

at the stage of down-sampling, LV-Net is C2/2 while V-Net
is 4C2 at the stage of up-sampling.
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Fig. 2: The modules in LV-Net. (a) IRB block. (b) Downsampling module. (c) 3D supervision module.

2.2. 3D deep supervision

In the training phase of deep neural networks, gradient van-
ishing is a notorious problem due to the difficulty of trans-
mitting gradient value to shallow layers, which makes it more
difficult to train deep networks [18]. Especially, this will be
worse when we use a 3D convolutional neural network in-
cluding a large number of parameters to train a small dataset
[19]. To address the issue, we present a novel strategy that in-
tegrates deep supervision mechanism into decoder as shown
in Fig. 1. We can see that a branch network is considered
as a constraint after each decoder stage, the branch is able to
inject gradient values from different losses, which can avoid
the problem of gradient vanishing. Fig. 2c shows the de-
tailed architecture of 3D deep supervision, where the point-
wise convolution is firstly used for the input feature maps,
then the trilinear interpolation is used for up-sampling, and fi-
nally softmax layer is used for computing the probability map
of the segmentation result. Here, we use a cross-entropy loss
function to estimate the difference between the final feature
maps and labels.

We define the loss function from the end of decoder as the
main loss function denoted by Lmain

Lmain(X,W ) =
∑
xi∈X

−logp(ti|xi;W ), (1)

whereX denotes training samples,W denotes the parameters
of backbone network, ti is the label of xi, xi ∈ X . Besides,
there are also four auxiliary loss functions denoted by L1, L2,
L3, L4, respectively,

Li(X;Wi, ŵi) =
∑
xi∈X

−logp(ti|xi;Wi; ŵi), (2)

where Wi denotes parameters of backbone networks, ŵi de-
notes the parameters of point-wise convolution in deep super-
vision block. According to Eq. 1 and Eq. 2, we present the

final loss function of LV-Net

L = Lmain +

4∑
i=1

ηiLi + λ(‖W‖2 +
4∑

i=1

‖ŵi‖2), (3)

where ηi represents the weight of the i-th auxiliary loss func-
tion. Here the third term of Eq. 3 is the weight decay, where
λ denotes the decay coefficient.

As different convolutional layers of decoder have different
contributions on the final loss function, the balancing weight
ηi is variant for Li. Generally, the deeper a network is, the
wider the perceptive field is, and the representation capability
of feature is stronger, which means the output of decoder at
deep layers is more important than the output of shallow lay-
ers. According to this principle, we set η1 = 0.2, η2 = 0.4,
η3 = 0.6, and η4 = 0.8, respectively.

Based on the analysis above, the introduction of deep su-
pervision has two advantages: (1) it improves the training ef-
ficiency of a network, i.e., it can speed up the convergence of
network; and (2) it can help the network to learn more com-
plex and useful features leading to high segmentation perfor-
mance.

3. EXPERIMENTS

To evaluate the performance of proposed LV-Net on liver
segmentation tasks, we consider MICCAI 2017 Liver Tumor
Segmentation Challenge (LiTS) dataset [20] as experimental
data. The LiTS includes 131 labeled 3D CT scans, where the
resolution in-plane ranges from 0.55mm to 1.0mm and slice
spacing ranges from 0.45mm to 6.0mm. In our experiments,
we randomly choose 90 and 10 volume data to construct
training set and validation set, respectively. The other 31
volume data are considered as test set. Experiments are per-
formed on a workstation with Intel Core i9 9900X @ 3.5GHz,
128GB RAM, double NVIDIA GeForce RTX 2080Ti GPU,
Windows 10 Pro, and PyTorch 1.2.



3.1. Dataset pre-processing

In this experiment, image preprocessing includes three stages:
truncating the range of image intensity values, scaling the
slice, and normalizing the grayscale value of slice. The first
stage is used to enhance liver area and remove irrelevant de-
tails, which can achieve better feature learning and thus im-
prove segmentation effect. Here we set the range of [-200,
200] HU. The second stage is used to reduce the memory re-
quirement of hardware environment. Here we choose sequen-
tial 16 slices and resize each slice from 512×512 to 256×256.
The last stage is used for the normalization of input samples,
which is a key factor that affects the final segmentation perfor-
mance. Here, we use mean value and variance to normalize
input data.

3.2. Training

We set the values of hyper-parameters to train LV-Net. The
batch size is set to 4. The initial learning rate is 0.001, and it
multiplies 0.9 at the end of each epoch. We use cross entropy
loss and adaptive moment estimation (ADAM) [21] to opti-
mize the network, and weight decay is set to 1e-5. The total
loss is the weighted sum of main loss and auxiliary losses.
In addition, ELU [22] is considered as the activate function,
which can not only boost up the traning speed, but also bring
better generalization performance than ReLU. Batch normal-
ization is performed after each convolutional layer. The val-
idation set mentioned above is used to check whether the
model is overfitting or not at the end of each epoch. Once the
model achieves the best performance on validation set which
often happens after about 20 epochs’ training, the training
stops and the model parameters are saved for further evalu-
ation.

3.3. Evaluation and results

We use five metrics to evaluate comprehensively the segmen-
tation quality of each network in this experiment. They are:
DICE per case (DICE), volume overleap error (VOE), rela-
tive volume difference (RVD), average symmetric surface dis-
tance (ASSD [mm]), and maximum symmetric surface dis-
tance (MSSD [mm]). Note that a perfect segmentation means
that the value of DICE score is 1, while the value of each of
VOE, ASSD, and MSSD score is 0.

Table 2 presents the segmentation performance on the
test set using U-Net [11], CE-Net [12], 3D U-Net [13], V-
Net [14], and proposed LV-Net. It is clear that our LV-Net
achieves an average DICE of 0.954, an average VOE of 0.086,
an average RVD of 0.016, an average ASSD of 1.871 mm,
an average MSSD of 29.496 mm. Except for the value of
RVD that is slightly lower than the value provided by 3D
U-Net in the first place, the remaining metrics of LV-Net are
higher than comparative networks. The LV-Net shows the
best segmentation performance on the LiTS dataset.

Table 2. Quantitative evaluation results of different networks on the
liver segmentation testing set.

Models DICE VOE RVD ASSD (mm) MSSD (mm)

U-Net [11] 0.9399 0.1114 0.0322 5.7985 123.5763

CE-Net [12] 0.9404 0.1103 0.0619 4.1162 115.4076

3D U-Net [13] 0.9400 0.1113 0.0142 2.6173 36.4352

V-Net [14] 0.9426 0.1065 0.0192 2.4887 38.2826

LV-Net 0.9543 0.0856 0.0156 1.8705 29.4960

Table 3. Comparison of the efficiencies of different networks.

Models trainable parameters operations (GFLOPs) storage usage (MB)

U-Net [11] 13,394,242 123.96 51.15

CE-Net [12] 29,003,668 35.78 110.77

3D U-Net [13] 16,320,322 1,032.80 62.27

V-Net [14] 65,173,903 516.12 248.69

LV-Net 1,659,282 58.07 6.56

We also count the quantities of trainable parameters and
computational costs of networks above, as shown in Table 3.
Compared with 2D CNNs, 3D CNNs obtains a certain in-
crease in segmentation performance, but they require more
memory usage and high computational cost. The proposed
LV-Net overcomes the drawbacks of 3D CNNs due to the
utilization of depth separable convolution and the design of
down/up-sampling modules. Consequently, the LV-Net is sig-
nificantly ahead of other 2D CNNs and 3D CNNs on the num-
ber of trainable parameters, computational cost, and storage
usage. For example, the number of trainable parameters of
LV-Net is only 2.55 % of the vanilla V-Net, the computational
cost is 11.25 %, and the storage usage is 2.64 %.

4. CONCLUSION

In this work, we mainly studied liver segmentation based
on 3D deep convolutional neural networks. We presented
a lightweight V-Net based 3D network by employing depth
separable convolution and 3D deep supervision to reduce the
memory requirement of 3D network while maintaining the
segmentation accuracy for a liver. Experiments demonstrated
that the proposed LV-Net can achieve higher segmentation ac-
curacy and is much lighter than popular 2D and 3D networks
such as U-Net, CE-Net, 3D U-Net, and V-Net. Consequently,
the proposed LV-Net is more suitable for clinical practice, and
it can be extended to other medical volumetric segmentation
tasks easily.

In the future, we will implement the LV-Net to liver tumor
segmentation and liver blood vessel segmentation tasks that
are more challenging and valuable in clinical medicine. Addi-
tionally, the neural architecture search (NAS) will be studied
to search better basic blocks for improving the LV-Net.
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