
A RANDOM GOSSIP BMUF PROCESS FOR NEURAL 
LANGUAGE MODELING

Delivered by Dr. Yiheng Huang

Yiheng Huang*  Jinchuan Tian*  Lei Han*  Guangsen Wang*  Xingchen Song††  Dan Su*  Dong Yu†

*Tencent AI Lab
††Department of Computer Science and Technology, Tsinghua University, Beijing, China

†Tencent AI Lab, Bellevue, WA, USA



Deep Learning

Machine Learning

Computer Vision Speech Recognition Natural Language 
Processing

DNN CNN LSTM

Introduction: Background



Introduction: Background

Distributed Learning Algorithms are necessities in industrial practices

As data size and model complexity increase, one essential challenge is to 
leverage between scaling the learning procedure and handling big data



Introduction: Centralized vs. Decentralized 

System Structure Classification

Centralized(left): Parameter-Server(red node) included vs. Decentralized(right): Parameter-Server excluded 

Structure Features Drawbacks

Centralized

The parameter-server:
• collects/distributes variables (or 

gradients) from all worker nodes
• controls the learning process

• Communication speed with the parameter-
server is the bottleneck of the training 
process   

Decentralized
• Collect/Distribute variables (or gradients) 

by peer-to-peer communication
• Poor accuracy performance compared with 

Centralized structure



Introduction: Related Works

Related Works:

• Centralized methods:
• Downpour SGD[8]:utilizes thousands of machines to train various deep machines with an                 

asynchronous SGD (ASGD) procedure
• Hogwild ASGD[9]; EASGD[10]
• Model Average[12,13] and its derivatives like Blockwise Model Update Filtering(BMUF)[14]: 

• (1) models are updated independently on their own computing nodes
• (2) the global average without/with momentum item is used to synchronize the models accordingly 

every a few iterations

• Decentralized:
• Gossip[19]: recursively, each node fetches the parameters of another node, and then compute the 

average between that and the local model to update itself.   

Our method, gossip-BMUF, is mainly inspired by BMUF and gossip



Model Average(MA)

Recursively, all nodes update as follow：
① Models are identical on all nodes after latest loop
② Each node updates its local model independently by local data, and then a local move vector(blue arrow) is 

accessible on each node
③ A global move vector(red arrow) is computed by  averaging all local move vectors, and the initial model is 

updated by the global move vector to obtain the new model

①

initial model

②

local move vectors

③

global move vector

initial model

new model



Statistical Analysis of MA

Under mild assumptions, the MA estimator will asymptotically approach the optimal 
but with a bias term that is proportional to the number of nodes.

* Learn the proof in our paper

Theorem* Let f be a m-strongly convex function with L-lipschitz gradients. Assume that we can sample gradients 𝒈 =

∇𝑓 𝜽𝒕; 𝑿𝒊 + 𝝃𝒊. with additive noise with zero mean 𝔼 𝝃𝒊 = 𝟎 and bounded variance 𝔼 𝝃𝒊
𝑻𝝃𝒊 ≤ 𝜎2 Then, running the 

MA algorithm, with constant step size 0 < α <
2

𝑚+𝐿
, the expected sum of squares convergence of the local parameters 

to the optimal is bounded by

𝔼 𝜽𝒕 − 𝜽∗𝟏
2 ≤ 1 − 2𝛼 ·

𝑚𝐿

𝑚 + 𝐿

𝑡

𝜽𝟎 − 𝜽∗𝟏
2 + 𝑛

𝑚 + 𝐿

2𝑚𝐿
𝛼𝜎2

converge to zero as t grows bias term, grows linearly 
with number of node: n

Assume 𝜽𝒌 is the parameter for worker k, then 𝜽𝒕 = [(𝜽𝒕
𝟏)𝑻, ⋯ , (𝜽𝒕

𝒏)𝑻]𝑻 is the concatenated parameter 
vector for all workers at time t. Also note 𝜽∗𝟏 = [𝜽∗

𝑻, ⋯ , 𝜽∗
𝑻]𝑻 is the optimal parameters to be estimated.



BMUF: a derivative of MA

Blockwise Model Update Filtering(BMUF)

MA

In BMUF, the momentum-like process is introduced
We note block momentum, block learning rate and synchronization period by η, ξ and T respectively;  for a model at time t and on 
rank k, 𝜽𝒌, function 𝐿𝑜𝑐𝑎𝑙𝑀𝑜𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟(𝑡, 𝑘) stands for its local update information of that time and rank. Then BMUF 
optimizes the model from time t to t+T as follow: 

𝜽𝒕+𝑻
𝒌 ←𝝎𝒈 + σ𝒊=𝟎

𝑻−𝟏 𝐿𝑜𝑐𝑎𝑙𝑀𝑜𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟(𝑡 + 𝑖, 𝑘)

𝜽𝒕+𝑻 ← (σ𝒌=𝟏
𝒏 𝜽𝒕+𝑻

𝒌 ) /𝑛

𝑮 ← 𝜽𝒕+𝑻 −𝝎𝒈

𝜟 ← η𝜟 + 𝜉𝑮 (0 ≤ η < 1, 𝜉 > 0)
𝛚 ← 𝛚+ 𝜟

൝
𝝎𝒈 ← 𝛚 𝑖𝑓 𝐶𝑙𝑎𝑠𝑠𝑖𝑐 𝐵𝑙𝑜𝑐𝑘 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚(𝐶𝐵𝑀)

𝝎𝒈← 𝛚+ η𝜟 𝑖𝑓 𝑁𝑒𝑠𝑡𝑒𝑟𝑜𝑣 𝐵𝑙𝑜𝑐𝑘 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚(𝑁𝐵𝑀)

𝜽𝒕+𝑻
𝒌 ←𝝎𝒈

current global move vector

BMUF

current global move vector

previous global move vector real update vector



BMUF: from Centralized to Decentralized

• BMUF is centralized and requires global communication: an all-reduce process. 
Problems occur since:
• Communication latency is considerable when number of nodes grows

• gossip-BMUF, with gossip process introduced, is in decentralized style and benefits 
from:
• Communication effort is significantly reduced as only local communications are 

needed 

We further optimize BMUF by introducing gossip-like process



Naïve Gossip Process

The gossip process described in [19] acts as follow

Node

Node

Node

Node

initial model intermediate model new model

local update random sampling from another node
(gossip)

Averaging



Gossip Process: Our Modified Version

Our randomness in gossip process, however, is more complex

Ring Topology: each node only sample its 
neighbors instead of all other nodes

For each node(like the red one), only p nodes on its right 
and left are connected and could be sampled, called 

neighbors(the blue ones). p is considered symmetric degree
(Above: 8-node ring topology with 2 symmetric degree) 

Model Split: split the model into multiple 
components

component 1

component m

⋯

⋯

component 2

component m-1

For models of each rank , the model 𝜽 is split into m

components: 𝜽 = [𝜽𝟏
𝑻, ⋯ , 𝜽𝒎

𝑻 ]𝑻



• With a n-node, p-symmetric topology, the whole model parameter θ is split 
into m components: 𝛉 = [𝛉𝟏

𝐓, ⋯ , 𝛉𝐦
𝐓 ]𝐓, and the training dataset D is evenly split 

into n partitions: 𝐃 =∪ 𝐃𝐤=𝟏⋯𝐧

• To implement Gossip-BMUF, hyper-parameter setting and additional variable 
initialization are necessary for each worker k:

• Require: initial model 𝛉𝟎
• Require: components of the model 𝛉 = [𝛉𝟏

𝐓, ⋯ , 𝛉𝐦
𝐓 ]𝐓

• Require: slots 𝚫𝐤, 𝛚𝐤, 𝐆𝐤, with the same shape as θ

• Require: training data with labels D

• Require: synchronous period Hi for each component 𝛉𝐢
• Require: number of gossip neighbors q ≤ 2p

• Require: momentum η and block learning rate ζ

• Require: learning rate αt

Gossip-BMUF: Pseudo-Code 



1. 𝛉𝟎
𝐤 ← 𝛉𝟎, 𝛚𝐤 ← 𝛉𝟎, 𝚫𝐤 ← 𝟎, 𝐆𝐤 ← 𝟎

2. For for i = 1, ⋯ , T do

3. sample a mini-batch from 𝐃𝐭
𝐤 and calculate the  

gradients 𝒈𝒕
𝒌

4. for i = 1, ⋯, m parallel do

5. 𝜽𝒊,𝒕
𝒌 ← 𝜽𝒊,𝒕−𝟏

𝒌 − 𝛼𝑡 · 𝒈𝒊,𝒕
𝒌

6. if t mod Hi == 0 then

7. randomly choose q neighbors k1⋯ , kq

8. ഥ𝜽𝒊,𝒕
𝒌 ←

1

𝑞+1
𝜽𝒊,𝒕
𝒌 + σ1≤𝑗≤𝑞 𝜽𝒊,𝒕

𝒌𝒋

9. if Gossip-BMUF then

10. 𝑮𝒊
𝒌 ← ഥ𝜽𝒊,𝒕

𝒌 − 𝜽𝒊,𝒕−𝑯𝒊

𝒌

11. 𝜟𝒊
𝒌 ← 𝜼𝜟𝒊

𝒌 + 𝛇𝑮𝒊
𝒌

12. 𝝎𝒊
𝒌 ← 𝝎𝒊

𝒌 + 𝜟𝒊
𝒌

13. 𝜽𝒊,𝒕
𝒌 ← 𝝎𝒊

𝒌 + 𝜼𝜟𝒊
𝒌 (Nesterov)

14. else if Gossip-MA then

15. 𝜽𝒊,𝒕
𝒌 ← ഥ𝜽𝒊,𝒕

𝒌

16. end if

17. end if

18. end for

19. end for

20. return    𝜽 =
1

𝑛
σ𝑘=1
𝑛 𝜽𝑻

𝒌

gossip-BMUF training Process on worker k

Gossip-BMUF: Pseudo-Code 



• A Gossip process is independently random:
• on different nodes;

• for different components of the model;

• in different iterations where synchronization conducts

* Different colors of blocks indicate different  nodes

model on rank k, time t

component 1

component m

⋯

⋯

⋯

component p

component p component p component p⋯

sampled from neighbors

component 1

component m

⋯

⋯

⋯

component p

component p component p component p⋯

sampled from neighbors

model on rank k’, time t

Averagingθp,𝑡
𝑘 θp,𝑡

𝑘′

Gossip Process: Our Modified Version



* Different colors of blocks indicate different ranks

model on rank k, time t

component 1

component m

⋯

⋯

component p

component p component p component p⋯

sampled from neighbors

component p’ component p’ component p’⋯

sampled from neighbors

Averaging
θp′,𝑡
𝑘

θp,𝑡
𝑘

component p’

• A Gossip process is independently random:
• on different nodes;

• for different components of the model;

• in different iterations where synchronization conducts

Gossip Process: Our Modified Version



model on rank k, time t

component 1

component m

⋯

⋯

⋯

component p

component p component p component p⋯

sampled from neighbors

component 1

component m

⋯

⋯

⋯

component p

component p component p component p⋯

sampled from neighbors

model on rank k, time t’

Averagingθp,𝑡
𝑘 θp,𝑡′

𝑘

* Different colors of blocks indicate different ranks

• A Gossip process is independently random:
• on different nodes;

• for different components of the model;

• in different iterations where synchronization conducts

Gossip Process: Our Modified Version



Gossip-BMUF: Additional

Two things to highlight in Gossip-BMUF

Full Sampling: Gossip process would degrade 
if all neighbors are sampled

Gossip process would degraded to local process if all 
neighbors are sampled, as no randomness is introduced.

(Above: local process(left), gossip process(right). Blue node 
means being sampled)

component 1

component m

⋯

⋯

component 2

Synchronization Period: different components 
may have different synchronization period

Synchronization Period 𝐻1

Synchronization Period 𝐻2

Synchronization Period 𝐻𝑚

⋯



Experiments and Results: Experiment Setting

Platform
• 2 identical MPI-based HPC machine learning platforms with 16 Nvidia Tesla M40 in total
• Implemented by TensorFlow equipped with Horovod*

Task and Dataset: 
• Language Modeling Task
• wiki-text-103: 0.1B tokens; Gutenberg: 0.13B tokens

Model Configuration
• A standard, 1-layer LSTM structure and a projection layer is chosen, with adaptive-softmax trick adopted.
• Set block learning rate and momentum to 1.0 and 0.9 respectively
• The whole model is split into groups: 

• Embeddings are evenly split into 8 shards; 
• LSTM weights form one group; 
• LSTMP weights form another group; 
• Head weights in adaptive-softmax form one group;
• Weights of each tails in adaptive-softmax form their individual groups.

• Learn more details about our language model setting and optimization strategy in our paper

* An internal modified version of Horovod that contains the implementation of Gossip process



Experiments and Results: Explanation of Experiments

Explanation of Experiments:

• We use Parentheses “()” to note the synchronization period:
• (8) means: all variables are synchronized every 8 iterations
• (16, 128) means: all variables except the embedding tables are synchronized every 16 

iterations, while the embedding tables are synchronized every 128 iterations.

• We use curly braces “{}” to note the integer pairs of symmetric degree and number of gossip 
neighbors like {p, q}
• For gossip-BMUF / gossip-MA, we choose {1, 1}, {2, 2}, {3, 2} for 4 / 8 / 16 GPUs 

respectively.
• For local-BMUF / local-MA, we choose {1, 2}, {2, 4}, {3, 6} for 4 / 8 / 16 GPUs respectively.
• We empirically recommend to choose 𝑝 = log2 𝑛 − 1 where n is the number of nodes



Experiments and Results: Experimental Results on wiki-text-103

Method-period GPUs Test ppl Period GPUs Test ppl

MA-(8) 4 55.1 (16,128) 8 64.1

BMUF-NBM-(8) 4 50.7 (16,128) 8 50.3

local-BMUF-(8) 4 51.0 (16,128) 8 50.4

gossip-BMUF-(8) 4 48.4 (16,128) 8 49.0

MA-(16,128) 4 54.3 (16,128) 16 80.5

BMUF-NBM-(16,128) 4 51.1 (16,128) 16 50.5

local-BMUF-(16,128) 4 51.5 (16,128) 16 50.6

gossip-BMUF-(16,128) 4 48.5 (16,128) 16 49.3

single-GPU baseline 49.3

wiki-text-103 Results

Method-GPUs period Speedups

Gossip-BMUF-4 (16,128) 3.42X*

Gossip-BMUF-8 (16,128) 6.32X*

BMUF-4 (16,128) 3.20X

BMUF-8 (16,128) 5.47X

* These results are obtained by our further optimization, differing from initial results in our paper



Experiments and Results: Experimental Results on Gutenberg

method-period GPUs test ppl

MA-(16,128) 4/8/16 158.0/178.9/211.1

BMUF-NBM-(16,128) 4/8/16 156.3/152.6/146.3

local-BMUF-(16,128) 4/8/16 156.1/153.8/148.0

gossip-BMUF-(16,128) 4/8/16 149.4/148.4/146.1

single-GPU baseline 144.6

Gutenberg Results

Observations:
• gossip-BMUF consistently outperform other methods, and even achieve better results than single-GPU baseline 

on wiki-text-103 dataset
• The performance degradation of MA is very significant when the number of GPUs is large
• Local-BMUF has a slightly worse performance than BMUF-NBM, which indicates that the randomly selected 

neighbors are the key success in gossip-BMUF



Experiments and Results: Training Curves of wiki-text-103

Observation:
• The training curves of gossip-BMUF is very similar to that of single-GPU baseline
• The training curves of BMUF-NBM fluctuates more fiercely than that of gossip-BMUF
• The training curves of BMUF and local-BMUF indicate that the over-fitting might already happen



Conclusion

combine gossip process(modified) with BMUF:
gossip-BMUF 

Gossip-BMUF: randomly samples neighbors and act in a 
BMUF-like process

(Above: BMUF(left), gossip(right)) 

Features of gossip-BMUF

• Decentralized style:
• Adopt more flexible topology

• Robustness:
• The training can continue even several nodes get stuck

• Accuracy:
• Consistently better performance than other competitors 

on two benchmarks
• Speedup:

• Considerable speed improvement, as no global 
communication needed

• Randomness:
• The random collection of neighbor components are the 

key success of our algorithm
• Over-fitting reduction:

• Best approximation of single-GPU baseline and less 
over-fitting observed compared with BMUF



Future Work Perspective

Experimentally evaluate our method on other 
deep machines

Statistical Analysis on gossip-BMUF

Gossip-BMUF

CNN Transformer ⋯

Gossip-BMUF

Convergence
Speed

Convergence
Bound

⋯



Thanks for Listening!


