
Flow-Guided Temporal-Spatial Network for HEVC Compressed Video Quality Enhancement

Xiandong Meng¹, Xuan Deng², Shuyuan Zhu², Shuaicheng Liu² and Bing Zeng²

In this work, a flow-guided temporal-spatial network (FGTSN) is proposed to enhance the quality of HEVC compressed video. Specially, we first employ a motion estimation subnet via trainable optical flow module to estimate the motion flow between current frame and its adjacent frames. Guiding by the predicted motion flow, the adjacent frames are aligned to current frame. Then, a temporal encoder based on bidirectional ConvLSTM with residual structure is designed to discover the variations between current frame and its warped frames. Finally, the reconstruction frame is generated by training the model in a multi-supervised fashion. Our advantage of temporal-spatial method takes

information to enhance the compressed video Quality

²University of Electronic Science and Technology of China

The Framework of our proposed FGTSN method

The proposed multi-scale ENet structure

Overall $\triangle PSNR$ (dB) results of different methods under LD

QP	Class	Seq	ARCNN [3]	QECNN [4]	DCAD [5]	MFQE [6]	SDTS [7]	FGTSN (ours)
37	A	PeopleOnStreet	0.4579	0.5517	0.5286	0.7526	0.7818	0.8223
		Traffic	0.2864	0.3213	0.3208	0.4215	0.4636	0.4684
	В	Kimono1	0.2439	0.2502	0.2557	0.3927	0.4066	0.7537
		ParkScene	0.1658	0.1769	0.1644	0.3135	0.3568	0.4548
		Cactus	0.1886	0.2334	0.2659	0.3263	0.3709	0.4823
		BasketballDrive	0.1753	0.2164	0.2540	0.1738	0.1932	0.3951
		BQTerrace	0.1148	0.1617	0.2527	0.2394	0.2303	0.3298
	C	BasketballDrill	0.1313	0.2037	0.2844	0.2656	0.2761	0.4361
		BQMall	0.0673	0.1194	0.1962	0.2670	0.2807	0.3828
		PartyScene	-0.0337	0.0062	0.1083	0.0413	0.0624	0.3026
		ParkScene	0.1909	0.2596	0.2643	0.2414	0.2602	0.4641
	D	BasketballPass	0.1315	0.2456	0.2726	0.4687	0.4691	0.5084
		BQSquare	-0.1283	-0.0607	0.1527	-0.0275	0.0131	0.3162
		BlowingBubbles	0.0774	0.1416	0.1347	0.2976	0.3474	0.3855
		RaceHorses	0.3166	0.3590	0.3887	0.4770	0.5247	0.7248
	E	FourPeople	0.3813	0.4686	0.5140	0.5741	0.6085	0.6313
		Johnny	0.2635	0.3496	0.3736	0.4792	0.4468	0.5076
		KristenAndSara	0.3158	0.4080	0.4837	0.5055	0.5461	0.6838
	Average		0.1859	0.2451	0.2906	0.3416	0.3688	0.5028
42	Average		0.2009	0.2417	0.2622	0.3747	0.4163	0.5167

^{*} All comparison methods are retrained over the same training dataset according to authors' recommended parameters.

The experimental results show that our proposed FGTSN method significantly improves the quality of HEVC compressed video at different QPs under LD configuration, much better than the state-of-the-art quality enhancement methods.

¹ Hong Kong University of Science and Technology