Edge minimization in de Bruijn graphs

<u>Uwe Baier</u>, <u>Thomas Büchler</u>, Enno Ohlebusch, Pascal Weber

Ulm University

Institute of Theoretical Computer Science

Data Compression Conference 2020

In this talk

De Bruijn graphs and edge reduction

De Bruijn graph edge minimization problem

Connection between De Bruijn graph and Rotations Trie

Sketch of an efficient solution

Connections to Tunneling

Conclusion

Motivation

Tunneling

- compression scheme for the Burrows Wheeler Transform
- applicable to lossless data compression [Baier, CPM 18]
- applicable to FM-index compression [Alanko et al, DCC 19]

Tunnel planning

- NP-complete for overlapping tunnels [Baier and Dede, DCC 19]
- open problem for non-overlapping tunnels [Alanko et al, DCC 19]

Open problems are: How to find the optimal blocks that minimize space? Can we still support path searching if blocks are overlapping?

De Bruijn graphs

- invented in 1946 for solving combinatorial problems
- usage in bioinformatics, e.g. genome assembly or variation

De Bruijn graph $G_2(AGTGGTGG\$)$ of order k = 2.

De Bruijn graph

Let *S* be a string of length *n* and $k \in [1, n]$.

- *k*-cyclic string of $S: Z_k(S) \coloneqq S[1..n]S[1..k].$
- de Bruijn graph $G_k(S) = (\mathcal{K}, E)$ of order k:

De Bruijn graph compression

- basis of compression: nodes x and y s.t.
 - x is the only predecessor of y
 - y is the only successor of x
- typical compression: merge nodes
- our concept: fuse multi-edges to one edge

Edge-reduced de Bruijn graphs

• edge-reduced de Bruijn graph $\widetilde{G}_k(S)$: fuse all multi-edges where nodes fulfill the predecessor-successor relationship

De Bruijn graph edge minimization problem

Let *S* be a string of length *n*, find the order $k \in [1, n]$ minimizing the number of edges in the edge-reduced graph $\widetilde{G}_k(S)$.

Edge-reduced DBGs with $k \in \{1, 2, 3\}$ for S = AGTGGTGG\$.

Connection between De Bruijn graph and Rotations Trie

A Rotations Trie is a rooted tree with each node representing a (cyclic) substring of a text:

- label(root) = ε
- v is a child of u, iff label(v) is a right extensions of label(u)
- The size of node u euquals the number of (cyclic) occurrences of label(u) in the text.

Connection between De Bruijn graph and Rotations Trie

- Node in DBG has one predecessor iff the analog node in RT has only one left extension.
- Node in DBG is a single successor iff the target of left extension is a single child.

A naive approach

Given the Rotations Trie:

- Iterate over all nodes of a level.
- For each node check if the conditions for edge reduction is given.
- Count how many edges can be removed in this level.
- Go to next level.
- Return level with the lowest edge count.

This method has a quadratic runtime. We can do better!

The efficient algorithm

Information about reductions of edges are passed down from level to level. Not all nodes of a level will be visited, but only nodes that change the structure of RT (blue).

Top down precedure is terminated, when number of nodes of a level is greater than current minimum edge count.

The efficient algorithm

Implementation details:

- A FM-Index instead of a Rotations Trie is used
- Left extensions are backward steps
- Given the FM-Index, the runtime is $\mathcal{O}(m^* \log(\sigma))$
- Given the text, the runtime is $\mathcal{O}(n\log(\sigma))$
- ▶ *k*^{*}, *m*^{*} and vectors marking the fusions are calculated

Burrows Wheeler Transform

sort list of prefixes and rotations by the rotations

prefixes		sorted rotations
AGTGGTGG	•	\$AGTGGTGG
\$	•	AGTGGTGG\$
AGTGGTG	•	G\$AGTGGTG
AGTGGT	•	GG\$AGTGGT
AGT	•	GGTGG\$AGT
AGTG	•	GTGG\$AGTG
А	•	GTGGTGG\$A
AGTGG	•	TGG\$AGTGG
AG	←	TGGTGG\$AG

Burrows Wheeler Transform

- sort list of prefixes and rotations by the rotations
- BWT L: last character of prefixes; F: first character of rotations

L		F
AGTGGTGG	←	\$AGTGGTGG
\$	•	AGTGGTGG\$
AGTGGTG	•	G\$AGTGGTG
AGTGGT	•	GG\$AGTGGT
AGT	←	GGTGG\$AGT
AGTG	←───	GTGG\$AGTG
А	←	GTGGTGG\$A
AGTGG	←──	TGG\$AGTGG
AG	←──	TGGTGG\$AG

Burrows Wheeler Transform

- sort list of prefixes and rotations by the rotations
- BWT L: last character of prefixes; F: first character of rotations
- backward step: k-th c in L corresponds to k-th c in F

final BWT: string L (string F is given implicitely)

basis: equal suffixes of adjacent prefixes (prefix intervals)

prefixes		sorted rotations
AGTGGTGG	•	\$AGTGGTGG
\$	←	AGTGGTGG\$
AGTGGTG	•	G\$AGTGGTG
AGTGGT	←	GG\$AGTGGT
AGT	•	GGTGG\$AGT
AGTG	←	GTGG\$AGTG
А	•	GTGGTGG\$A
AGTGG	←	TGG\$AGTGG
AG	•	TGGTGG\$AG

- basis: equal suffixes of adjacent prefixes (prefix intervals)
- mark rotations and prefixes ending in the prefix interval

prefixes		sorted rotations
AGTGGTGG	•	\$AGTGGTGG
\$	•	AGTGGTGG\$
AGTGGTG	•	G\$AGTGGTG
AGTGGT	•	GG\$AGTGGT
AGT	•	GGTGG\$AGT
AGTG	•	GTGG\$AGTG
А	←	GTGGTGG\$A
AGTGG	•	TGG\$AGTGG
AG	◄	TGGTGG\$AG

- basis: equal suffixes of adjacent prefixes (prefix intervals)
- mark rotations and prefixes ending in the prefix interval
- fuse adjacent marked entries; mark tunnel ends

- basis: equal suffixes of adjacent prefixes (prefix intervals)
- mark rotations and prefixes ending in the prefix interval
- fuse adjacent marked entries; mark tunnel ends

final tunneled BWT: string L and bit-vectors D_{out} and D_{in}

Tunneling and Edge reductions

- fusible paths in DBG correspond to special non-overlapping prefix intervals in the BWT
- number of edges in an edge-reduced DBG is equal to length of corresponding tunneled BWT
- minimizing edges minimizes tunneled BWT length using a restricted class of prefix intervals

Experimental Results

- test data: files from the Pizza & Chili and Repetitive corpus
- tunneled FM-index: tunneled BWT as a wavelet tree with overhead of two additional bit-vectors D_{out} and D_{in}

Conclusion

- ► introduction of the DBG edge minimization problem → efficient problem-solving algorithm
- ► deep connection to tunneling of non-overlapping prefix intervals → major progress in the open problem of Alanko et al. → FM-index size reduction of about 80 % for repetitive files
- edge-minimal DBGs are interesting in their own right
 constitution of graphs with minimum redundancy

Thanks for your Attention!