PADERBORN
UNIVERSITY

f

STEFAN BOTTCHER, RITA HARTEL, SVEN PEETERS

PATTERN SEARCH IN
GRAMMAR-COMPRESSED GRAPHS

Example Main ldea

Original Graph: Grammar-based graph compression:
] 2 3 4 5 6 v 8 9 - Repeatedly use a new nonterminal to replace each occurrence of
o o e o o o o o o a connected subgraph that occurs multiple times with a node
~ labeled with this nonterminal
Generation of Graph Grammar from Graph: - Single nodes of the original graph can be adressed within the

grammar by Grammar Paths:

- Node with ID 7 can be adressed by the Grammar Path
S/3:CDCD/1:CD/2:d, meaning 3rd node in S, 1st node in
CDCD, 2nd node in CD

e - 55_?‘:’;;_-.-, - Sets of nodes within the original graph that are represented by
Graph Grammar: SSSSEeR a single grammar node can be adressed by a
Edge: (5/3:CDCD/1:CD/2:d, S/3:CDCD/1:CD/1:c) Edge: (CD/1:c, CD/2:d) Grammar Path Suffix:
- The Grammar Path Suffix CD/2:d adresses the nodes with
I z f\ 3 142 IDs 2, 4, 7, and 9 of the original graph
S: CDCD DCD Gz :
'\/@ Improved Pattern search for Grammar-compressed Graphs:

Further Edges: ; 5 - Predecessor search on large node sets (within the original

(S/1:CDCD/2:CD/2:d, S/2:b) cDCD: O €D graph) is replaced by predecessor search on smaller sets of

(S/2:b, S/3:CDCD/1:CD/1:c) Grammar Path Suffixes (within the compressed grammair).

(S/3:CDCD/1:CD/1:c, S/1:CDCD/1:CD/2:d) - Pattern simulation based on predecessor search is significantly

(CDCD/1:CD/2:d, CDCD/2:CD/1:c) accelerated.

Pattern Search Results

Idea: lteratively sharpen sets of candidate Grammar Path Suffixes by - Search on compressed graphs outperforms search on
computing predecessors on sets of Grammar Path Suffixes (small) original graph
instead of on sets of nodes (large). - The bigger the graphs, the stronger the benefit
Initially: sim[u] = {c}; sim[u']={d} Pattern: Random graphs:
- The stronger the compression, the bigger the benefit
Step: Exclude all Grammar Path Suffixes from sim[u'] that are no oo : i + + * o0 ' * + +
predecessors of a Grammar Path Suffix of sim[u]. * e N I ﬁ J
Whenever necessary, Grammar Path Suffixes have to be split: 7 : * : * * + 100 . !
new sim[u'] = {CDCD/1:CD/2:d} g | ﬁ ! * * - * | R | el
500- **'P‘** ***.'
g . 200
_L"'*.L-l-*** 'L.;."' L $+*+ﬁ

u = = (WP PR PG PP PP TP PP P R, TP, PP, R, R, PP R, PO A Q0NN
Finally (intermediate steps omitted): A fixed-point is reached. B A NS
sim[u] = {S/3:CDCD/1:CD/1:c}; sim[u'] = {S/3:CDCD/1:CD/2:d} nodes nodes

LDBC Benchmark and RDF graphs (dbpedia):
- The more complex the patterns,
the stronger the benefit

Stefan Bottcher Rita Hartel Sven Peeters

stb@uni-paderborn.de rst@uni-paderborn.de speeters@campus.uni-paderborn.de

SCAN ME

