

Performance Limits of Single-Agent and Multi-Agent Sub-Gradient Stochastic Learning

Bicheng Ying and Ali H. Sayed

Electrical Engineering Department, University of California, Los Angeles, CA 90095 Emails: {ybc, sayed}@ucla.edu

Abstract

This work examines the performance of stochastic sub-gradient learning strategies, for both cases of stand-alone and networked agents, under weaker conditions than usually considered in the literature. It is shown that these conditions are automatically satisfied by several important cases of interest, including support-vector machines and sparsity-inducing learning solutions. The analysis establishes that sub-gradient strategies can attain exponential convergence rates, as opposed to sub-linear rates, and that they can approach the optimal solution within $O(\mu)$, for sufficiently small step-sizes, μ . A realizable exponential-weighting procedure is proposed to smooth the intermediate iterates and to guarantee these desirable performance properties.

Introduction

The minimization of *non-differentiable* convex cost functions is a critical step in the solution of many important design problems [1–3], including the design of sparse-aware (LASSO) solutions [4,5], support-vector machine (SVM) learners [6–10], or total-variation based image denoising solutions [11,12]. The sub-gradient technique is a popular choice for minimizing such non-differentiable costs; it is closely related to the traditional gradient-descent method where the actual gradient vector is replaced by a subgradient at points of non-differentiability. It is one of the simplest methods in current practice but is known to suffer from slow convergence. In particular, it is shown in [3] that, for convex cost functions, the optimal convergence rate that can be delivered by sub-gradient methods in *deterministic* optimization problems cannot be faster than the $O(1/\sqrt{i})$, where i is the iteration index.

However, the results in subsequent sections will show that when used in the context of *stochastic* optimization, sub-gradient descent algorithms turn out to have superior performance than suggested by traditional analyses in the deterministic context. In particular, under constant step-size adaptation, these algorithms will be shown to converge at the faster exponential rate of $O(\alpha^i)$ for some $\alpha \in (0,1)$ when the cost function is strongly-convex. This rate is much faster than the O(1/i) rate that would be observed under a diminishing step-size implementation for strongly-convex costs. We will clarify these favorable properties for both cases of stand-alone agents and networked agents [13–16].

Problem Formulation: Single Agent Case

We consider the problem of minimizing a risk function, $J(w): \mathbb{R}^M \to \mathbb{R}$, which is assumed to be expressed as the expected value of some loss function, Q(w; x), namely,

$$w^* \stackrel{\Delta}{=} \underset{w}{\operatorname{arg\,min}} J(w) \stackrel{\Delta}{=} \underset{w}{\operatorname{arg\,min}} \mathbb{E}_x Q(w; \boldsymbol{x})$$
 (1)

where w^* denotes the minimizer. We first denote the sub-gradient of J(w) at any arbitrary point w_0 by $g(w_0)$, and defined it as any vector $g \in \mathbb{R}^M$ that satisfies:

$$J(w) \ge J(w_0) + g^{\mathsf{T}}(w_0)(w - w_0), \ \forall w$$
 (2)

In the context of adaptation and learning, we do not know the exact form of J(w) because the distribution of the data is not known to enable computation of $\mathbb{E}_x Q(w; x)$. As such, true sub-gradient vectors for J(w) cannot be determined and they will need to be replaced by stochastic approximations evaluated from streaming data. We employ the following stochastic iteration [1, 3, 24, 25]:

$$\mathbf{w}_i = \mathbf{w}_{i-1} - \mu \,\widehat{g}(\mathbf{w}_{i-1}) \tag{3}$$

where the successive iterates, $\{w_i\}$, are now random variables (denoted in boldface) and $\widehat{g}(\cdot)$ represents an approximate sub-gradient vector at location w_{i-1} estimated from data available at time i. The difference between an actual sub-gradient vector and its approximation is referred to as *gradient noise* and is denoted by

$$\mathbf{s}_i(\mathbf{w}_{i-1}) \stackrel{\Delta}{=} \widehat{g}(\mathbf{w}_{i-1}) - g(\mathbf{w}_{i-1})$$
(4)

Modeling Conditions and Analysis

Assumption 1 (CONDITIONS ON GRADIENT NOISE) The first and second-order conditional moments of the gradient noise process satisfy the following conditions:

$$\mathbb{E}\left[s_i(\boldsymbol{w}_{i-1})\,|\,\boldsymbol{\mathcal{F}}_{i-1}\,\right] = 0 \tag{5}$$

$$\mathbb{E}[\|s_i(\boldsymbol{w}_{i-1})\|^2 \,|\, \boldsymbol{\mathcal{F}}_{i-1}\,] \leq \beta^2 \|w^* - \boldsymbol{w}_{i-1}\|^2 + \sigma^2$$
(6)

for some constants $\beta^2 \geq 0$ and $\sigma^2 \geq 0$, and where \mathcal{F}_{i-1} denotes the filtration corresponding to all past iterates (essentially, the conditioning in (5)–(6) is relative to the previous iterates).

The second condition ensures that w^* is unique so that the optimization problem is well-defined, and the third condition is more relaxed than what is traditionally imposed in the literature.

Assumption 2 (STRONGLY-CONVEX RISK FUNCTION) *The risk function is assumed to* be η -strongly-convex, i.e.,

$$J(\theta w_1 + (1 - \theta)w_2) \leq \theta J(w_1) + (1 - \theta)J(w_2) - \frac{\eta}{2}\theta(1 - \theta)\|w_1 - w_2\|^2$$
(7)

for any $\theta \in [0, 1]$, w_1 , and w_2 , and where $\eta > 0$

Assumption 3 (SUB-GRADIENT IS AFFINE-LIPSCHITZ) It is assumed that the subgradient of the risk function, J(w), is affine Lipschitz, i.e. there exist constants $c \ge 0$ and d > 0 such that

$$||g(w_1) - g(w_2)|| \le c||w_1 - w_2|| + d, \quad \forall w_1, w_2$$
 (8)

and for any choice $g(\cdot) \in \partial J(\cdot)$, where $\partial J(w)$ represent sub-differentials, i.e., the set of all valid sub-gradients at w.

In preparation for the analysis, we first conclude from (8) that:

$$||g(w_1) - g(w_2)||^2 \le e^2 ||w_1 - w_2||^2 + f^2 \ \forall w_1, w_2, \ g \in \partial J$$
 (13)

wnere

$$e^2 \stackrel{\Delta}{=} c^2 + \frac{2cd}{R} \ge 0, \quad f^2 \stackrel{\Delta}{=} d^2 + 2cdR \ge 0$$
 (14)

and the constant R is any positive number that we are free to choose.

Theorem 1 (SINGLE AGENT PERFORMANCE) Consider using the stochastic sub-gradient algorithm (3) to seek the unique minimizer, w^* , of problem (1), where the risk function satisfies Assumptions 1–3. If the step-size parameter is sufficiently small, then it holds that

$$\lim_{i \to \infty} \mathbb{E} J(\boldsymbol{w}_i^{\text{best}}) - J(w^*) \leq \mu(f^2 + \sigma^2)/2$$
 (16)

Moreover, the convergence of $\mathbb{E} J(\mathbf{w}_i^{\text{best}})$ towards $J(w^*)$ occurs at an exponential rate, $O(\alpha^i)$, where

$$\alpha \stackrel{\Delta}{=} 1 - \mu \eta + \mu^2 (e^2 + \beta^2) = 1 - O(\mu) \tag{17}$$

Suppose we choose a parameter κ that satisfies $\alpha \leq \kappa < 1$. Next, we introduce the convex-combination coefficients:

$$r_L(j) \stackrel{\Delta}{=} \frac{\kappa^{L-j}}{S_L}, \quad j = 0, 1, \dots, L, \text{ where } S_L \stackrel{\Delta}{=} \sum_{j=0}^L \kappa^{L-j}$$
 (18)

Using these coefficients, we define the weighted iterate

$$\bar{\boldsymbol{w}}_L \stackrel{\Delta}{=} \sum_{j=0}^L r_L(j) \boldsymbol{w}_j \tag{19}$$

Under the same conditions as in Theorem 1, it holds that

$$\lim_{L \to \infty} \mathbb{E}J(\bar{\boldsymbol{w}}_L) - J(w^*) \le \mu(f^2 + \sigma^2)/2 \tag{22}$$

The convergence of $\mathbb{E} J(\bar{\boldsymbol{w}}_L)$ towards $J(w^*)$ continues to occur at an exponential rate.

Problem Formulation: Multi-Agent Case

We now extend the previous results to multi-agent networks where a collection of agents cooperate with each other to seek the minimizer of an aggregate cost of the form:

$$\min_{w} \sum_{k=1}^{N} J_k(w), \quad \text{where } J_k(w) \stackrel{\Delta}{=} \mathbb{E}_{\boldsymbol{x}_k} Q_k(w; \boldsymbol{x}_k)$$
 (23)

We consider the following diffusion strategy in its adapt-then-combine (ATC) form:

$$\boldsymbol{\psi}_{k,i} = \boldsymbol{w}_{k,i-1} - \mu \, \widehat{g}_k(\boldsymbol{w}_{k,i-1}) \tag{24}$$

$$\boldsymbol{w}_{k,i} = \sum_{\ell \in \mathcal{N}_k} a_{\ell k} \boldsymbol{\psi}_{\ell,i} \tag{25}$$

Theorem 2 (NETWORK PERFORMANCE) Consider using the stochastic sub-gradient diffusion algorithm (24)–(25) to seek the unique minimizer, w^* , of problem (23), where the risk functions, $J_k(w)$, satisfy Assumptions 1–3 with parameters $\{\eta_k, \beta_k^2, \sigma_k^2, e_k^2, f_k^2\}$. Assume the step-size parameter is sufficiently small. It holds that

$$\lim_{i \to \infty} \mathbb{E} \left(\sum_{k=1}^{N} p_{k} J_{k}(\boldsymbol{w}_{k,i}^{\text{best}}) - \sum_{k=1}^{N} p_{k} J_{k}(\boldsymbol{w}^{\star}) \right) \leq \frac{\mu}{2} \sum_{k=1}^{N} \left(p_{k} f_{k}^{2} + p_{k}^{2} \sigma_{k}^{2} + 2 p_{k} f_{k} h \right) = O(\mu)$$
(27)

for some finite constant h. Moreover, the convergence occurs at an exponential rate, $O(\alpha_q^i)$, where

$$\alpha_{q} \stackrel{\Delta}{=} \max_{k} \left\{ 1 - \mu \eta_{k} + \mu^{2} e_{k}^{2} + \mu^{2} \beta_{k}^{2} p_{k} + \mu^{2} h \frac{e_{k}^{2}}{f_{k}} \right\}$$

$$= 1 - O(\mu) \tag{28}$$

Application over SVM problem

The two-class SVM formulation deals with the problem of determining a separating hyperplane, $w \in \mathbb{R}^M$, in order to classify feature vectors, denoted by $\mathbf{h} \in \mathbb{R}^M$, into one of two classes: $\gamma = +1$ or $\gamma = -1$. The regularized SVM risk function is strongly-convex and of the form:

$$J^{\text{svm}}(w) \stackrel{\Delta}{=} \frac{\rho}{2} ||w||^2 + \mathbb{E} \left(\max \left\{ 0, 1 - \gamma \boldsymbol{h}^{\mathsf{T}} w \right\} \right)$$
 (10)

We compare the performance of the stochastic sub-gradient SVM implementation against LIBSVM (a popular SVM solver that uses quadratic programming on dual problem) [27]. The test data is obtained from the LIBSVM website¹ and also from the UCI dataset². We first use the Adult dataset after preprocessing [28] with 11,220 training data and 21,341 testing data in 123 feature dimensions.

