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Abstract

Spectral Videos (SV) are datasets containing spatial-spectral-and-temporal information of
a moving scene and this kind of information have been successfully used in medicine, remote
sensing, and military application. However, expensive acquisition processes and difficulties
in equipment manufacture lead to low-resolution datasets. Therefore, super-resolution (SR)
techniques have emerged as a processing tool that recovers a high-resolution dataset by
expressing the measurements as compressed versions of the desired data. Furthermore, the
Convolutional Sparse Coding (CSC) has been developed as a signal model that learns a
dictionary directly from the target signal, improving the reconstruction quality. This work
proposes to extend the CSC formulation to consider temporal correlations in SVs, exploiting
the shifting invariance property of the CSC model. The simulation results show a PSNR
improvement in up to 2.5dB with respect to the state-of-the-art methods, preserving the
edges and textures of the spectral video frames.
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1 Introduction

Spectral Images (SI) capture 2D scenes in a specific wavelength range leading to a 3-D data
representation [1]. Although SIs have been widely used in fields such as medical diagnosis
[2], remote sensing [1], military operations [3], in many applications the changes in the
discrete-time dimension are also of high interest. In this regard, Spectral Video (SV) has
emerged as an image modality that has been used with great interest in object or human
tracking [4–6], cancer detection [7], bile duct inspection [8], and several types of surgery [9].

Traditional spectral imaging techniques, such as push-broom [10] or optical band-pass
filters [11], scan the scene per spatial line or for each required spectral band, respectively.
This process is quite slow compared to the required speed for capturing spectral videos.
This generate either major costs in manufacturing fast and reliable sensing equipment or
low spatial-and-spectral resolutions in order to maintain manufacturing costs.

In this regard, Super-Resolution (SR) techniques [12, 13] have emerged has a processing
tool for recovering high-resolution information from low-resolution measurements. In gen-
eral, the SR problem describes the low-resolution measurements as a compressed version of
the high-resolution data, which is recovered solving an inverse problem. In order to recover
the high-resolution data, the state-of-the-art methods use the sparse signal representation
model (SSR) [14, 15] as a signal framework for recovering the information of interest. In
this regard, the SSR model uses predefined dictionaries, specifically orthonormal basis, for
sparsely representing any signal.

On the other hand, synthesis frameworks, like the convolutional sparse coding (CSC),
have emerged as an alternative approach for sparsely representing multidimensional signals



[16], and recently this signal model has been expanded in order to represent the spatial-
spectral correlations of spectral images [17]. More precisely, CSC model characterizes a
signal as a sum of cyclic convolutions between coefficient maps with their corresponding
dictionary filters [18]. The collection of dictionary filters is learned from the signal to be
represented, improving the quality of the reconstruction. These specificity in the signal
representation, and the attached invariance to shifting and deformation property [18], rep-
resents an attractive framework for sparsely representing SVs.

The main contributions of this work are twofold: first, we present a model for represent-
ing a SV using a collection of 4D convolutionary dictionary elements and sparse coefficient
maps; second, we incorporate the proposed model into a SR scheme for recovering high-
resolution SVs. The results show an improvement in the recovery quality with respect to
the state-of-the-art methods, where the recovered frame preserves the edges and textures
of the spectral video frames.

This work is organized as follows: Section 2.1 presents the mathematical formulation
of the proposed CSC4D model. Sections 2.2-2.4 presents the application and numerical
solution of the CSC4D model to the SR-SV problem. Section 3 presents the results of the
numerical performance tests. Finally, Section 4 presents the conclusions of the proposed
method.

2 Proposed Work

2.1 Proposed CSC4D Model

This work proposes to expand the CSC formulation to a full 4D CSC framework, in order
to represent the spatial-spectral-temporal correlations in SVs. Let DDD = {DDDm|Md

m=1 | DDDm ∈
RdM×dN×dL×dT } be a collection of 4D convolutional dictionary elements andXXX = {XXXm|Md

m=1 |
XXXm ∈ RM×N×L×T } a collection of sparse coefficient maps, where dM , dN , dL, dT �M,N,L, T .
Then a SV SSS ∈ RM×N×L×T can be represented as

SSS =

Md∑
m=1

DDDm
4∗XXXm = D̄x = X̄d, (1)

where
4∗ denotes the 4D cyclic convolution. The equivalent lineal operator D̄ ∈ RMNLT×MNLTMd

is defined as D̄ = [D̄1...D̄Md
] where each D̄m ∈ RMNLT×MNLT is designed such that

D̄mxm = DDDm
4∗ XXXm, with xm ∈ RMNLT as the vectorization of XXXm. Consequently,

x = [xT1 ...x
T
Md

]T ∈ RMNLTMd . The matrix X̄ and vector d are created in the same way
profiting the convolution’s commutativity property.

2.2 Proposed CSC4D model for SR

In order to recover a high-resolution dataset from low-resolution measurements, we propose
to express the low-resolution measurements as a decimated version of the objective dataset:
ṡ = Hs, where s ∈ RMNLT is the vectorized version of SSS, ṡ ∈ RM1N1L1T is the vector
containing the low-resolution measurements and H ∈ RM1N1L1T ×MNLT is a decimation
matrix with M1 = M/α, N1 = N/β, L1 = L/γ, and α, β, γ ∈ N. Using the CSC model
then ṡ = HD̄x = HX̄d. For simplicity of the mathematical formulation we propose two
linked optimization problems, solved alternately, for obtaining the convolutional dictionary



elements and sparse coefficient maps. Then, the general optimization problems can be
formulated as

argmin
x

1

2

∥∥HD̄x− ṡ
∥∥2
2

+ λ ‖x‖1 , (2)

argmin
d

1

2

∥∥HX̄d− ṡ
∥∥2
2

+ ιCZ (d). (3)

Considering that convolutional dictionaries have a low performance for representing
the low-frequency components of multidimensional signals [19], this work uses the high-
frequencies versions of a dataset of interest. This version is obtained by performing a
high-pass filtering stage to the image data. On the other hand, the low-frequencies version
of the original dataset is interpolated up to scale, and added to the recovered high-resolution
high-frequencies version, completing the recovered high-resolution SV SSS1, as shown in Fig
1.

Figure 1: Proposed SR-CSC4D scheme

2.3 Coefficients Learning Subproblem

Eq. (2) is known as the Coefficients Update Problem (CUP), and aims to learn a collection
of sparse coefficient maps, hence the `1 restriction. CUP can be solved using the Alternating
Directions Multiplier Method (ADMM) [20] approach by introducing the auxiliary variables
u = D̄x and v = x. Then, the update steps can be written as

xj+1 = argmin
x

ρ

2

∥∥D̄x− uj + f j
∥∥2
2

+
ρ

2

∥∥x− vj + gj
∥∥2
2
, (4)

uj+1 = argmin
u

1

2
‖Hu− ṡ‖22 +

ρ

2

∥∥D̄xj+1 − u + f j
∥∥2
2
, (5)

vj+1 = argmin
v

ρ

2

∥∥xj+1 − v + gj
∥∥2
2

+ λ ‖v‖1 , (6)

f j+1 = f j + D̄xj+1 − vj+1, (7)

gj+1 = gj + xj+1 − vj+1. (8)

Note that the product D̄x in (4) denotes the sum of 4D cyclic convolutions, which can be
solved efficiently as the sum of Hadamard products in the 4D Fourier domain, as stated in
the Discrete Fourier Theorem (DFT). Equation (4) is then rewritten in the Fourier domain,
derived and equaled to zero with solution

x̂j+1 =
(

ˆ̄DH ˆ̄D + I
)−1 ( ˆ̄DHŵ + ẑ

)
, (9)

where ŵ = F4D

{
uj − f j

}
and ẑ = F4D

{
vj − gj

}
. The operator ˆ̄D = [ ˆ̄D1...

ˆ̄DMd
] ∈

CMNLT×MNLTMd is built analog to D̄ using the diagonalized Fourier transforms F4D {DDDm}.



The update xj+1 is obtained from folding x̂j+1 ∈ CMNLTMd into {X̂XX
j+1

m ∈ CM×N×L×T },
applying the inverse 4D Fourier transform and vectorizing. Eq. (5) is also solved by deriving
and equaling to zero, but solving in the spatial domain as

uj+1 =
(
HTH + ρI

)−1 (
HTw + ρz

)
, (10)

with w = ṡ and z = D̄xj+1 + f j . Finally, Eq. (6) is solved via shrinkage/soft thresholding
as

vj+1 = Sλ
ρ

(
xj+1 + gj

)
. (11)

The variable updates for CUP are summarized in the Algorithm 1:

Algorithm 1 CUP for CSC4D

Input: ṡ,H,dj ,uj ,vj , f j ,gj , λ
Output: uj+1,vj+1, f j+1,gj+1

1: create D̄ and ˆ̄D from dj

2: create ŵ = F4D

{
uj − f j

}
and ẑ = F4D

{
vj − gj

}
3: solve x̂j+1 using Eq. (9), fold it into {X̂XX

j+1

m }, and xj+1 = vec
(
F−14D

{
{X̂XX

j+1

m }
})

4: solve uj+1 using Eq. (10)
5: solve vj+1 using Eq. (11)
6: update f j+1 and gj+1 using Eq. (7) and (8)
7: return the updated split and dual variables

2.4 Dictionary Learning Subproblem

Eq. (3) is known as the Dictionary Update Problem (DUP), and aims to learn a collection of
convolutional dictionary elements. Each dictionary element is desired to be small and one-
norm, in order to avoid the scaling ambiguity between dictionary filters and coefficients.
In this order of ideas we must do some annotations. First, we zero-pad each of the Md

dictionary elements using the operator Zp : RdMdNdLdT → RMNLT , in order to match the
dimensions of the operator X̄ ∈ RMNLT×MNLTMd . Second, the constraint set [21]

CZp =
{
x ∈ RMNLT : (I− ZpZ

T
p )x = 0, ‖x‖2 = 1

}
, (12)

guarantees that the obtained dictionary elements are normalized and the zero-padding is
removed. Finally, the indicator function of the constrained set is introduced as

ιCZ (x) =

{
0 if x ∈ CZp
∞ if x /∈ CZp .

, (13)

and applied over each vectorized individual convolutional dictionary, but for notation sim-
plicity it will be applied over the whole collection. Finally, DUP can be solved using ADMM
by introducing the auxiliary variables p = X̄d and q = d, with update steps

dj+1 = argmin
d

σ

2

∥∥X̄d− pj + aj
∥∥2
2

+
σ

2

∥∥d− qj + bj
∥∥2
2
, (14)

pj+1 = argmin
p

1

2
‖Hp− ṡ‖22 +

σ

2

∥∥X̄dj+1 − p + aj
∥∥2
2
, (15)



qj+1 = argmin
q

σ

2

∥∥dj+1 − q + bj
∥∥2
2

+ ιCz(q), (16)

aj+1 = aj + X̄dj+1 − pj+1, (17)

bj+1 = bj + dj+1 − qj+1. (18)

Again, the product X̄d in Eq. (14) denotes the sum of 4D cyclic convolutions. Eq. (14)
is solved in the 4D Fourier domain, just as Eq. (4), as

d̂j+1 =
(

ˆ̄XH ˆ̄X + I
)−1 ( ˆ̄XHŵ + ẑ

)
, (19)

where ŵ = F4D

{
pj − aj

}
and ẑ = F4D

{
qj − bj

}
. Again, the update pj+1 is obtained by

folding p̂j+1, applying the inverse 4D Fourier transform and vectorizing. Eq. (16) is solved
just as Eq. (5) in the spatial domain as

pj+1 =
(
HTH + ρI

)−1 (
HTw + ρz

)
, (20)

with w = ṡ and z = X̄dj+1 + aj . Finally, the close solution for Eq. (16) is the proximal
[21]

proxιCZ
=

ZpZ
T
p (dj+1 + bj)∥∥ZpZTp (dj+1 + bj)

∥∥ . (21)

The variable updates for DUP are summarized in the Algorithm 2. Problems CUP and
DUP are solved alternately, with CUP’s updates feeding DUP and vice versa, per iteration,
as explained in Algorithm 3. The process continues until a desired reconstruction error,
desired sparsity threshold or a maximum number of iterations is achieved.

Algorithm 2 DUP for CSC4D

Input: ṡ,H,xj ,pj ,qj ,aj ,bj , λ
Output: pj+1,qj+1,aj+1,bj+1

1: create X̄ and ˆ̄X from xj

2: create ŵ = F4D

{
pj − aj

}
and ẑ = F4D

{
qj − bj

}
3: solve d̂j+1 using Eq. (19), fold it into {D̂DD

j+1

m }, and dj+1 = vec
(
F−14D

{
{D̂DD

j+1

m }
})

4: solve pj+1 using Eq. (20)
5: solve qj+1 using Eq. (21)
6: update aj+1 and bj+1 using Eq. (17) and (18)
7: return the updated split and dual variables



Algorithm 3 CSC4D for SV

Input: ṡ,H, {DDD0
m}, {XXX 0

m}, λ
Output: SSS1

Initialization:
1: build the vectorization d0 from {DDD0

m}
2: set {VVV0m} = {XXX 0

m} and build the vectorization v0

3: set {QQQ0
m} = {DDD0

m} and build the vectorization q0

4: set UUU0 = PPP0 =
∑Md

m=1DDD0
m

4∗XXX 0
m and build de vectorizations u0 and p0

5: set j=0;
Iterative Process:

6: repeat
7: solve (uj+1,vj+1, f j+1,gj+1) = CUP(ṡ,H,dj ,uj ,vj , f j ,gj , λ)
8: solve (pj+1,qj+1,aj+1,bj+1) = DUP(ṡ,H,vj+1,pj ,qj ,aj ,bj , λ)
9: set dj = qj+1

10: until the residuals meet a given tolerance, or completed a number of iterations.
11: create {DDDm} and {XXXm} from qj+1 and vj+1, respectively

12: return SSS1 =
∑Md

m=1DDDm
4∗XXXm

3 Simulation Testing and Results

3.1 Test Datasets

The proposed CSC4D method was tested using two laboratory-captured spectral videos,
Boxes and Toy Truck (see Fig 2) [15]. Both data sets have spatial resolution 128× 128, 16
spectral bands and 8 frames long.

(a)

(b)

Figure 2: False RGB of the test datasets (a) Boxes and (b) Toy Truck SVs.

3.2 Comparison Metrics

The CSC approach is compared against the state-of-the-art SSR approach. Particularly, we
use the Kronecker basis for spatial-spectral sparse representation [22] and both the DCT



Toy Truck

Figure 3: Reconstruction quality performance (PSNR) for various levels of sparsity (NNZ),
for the proposed CSC4D and SSR approach with different time-compression schemes.

and Wavelet basis as temporal compression [14, 15]. As comparison metrics we used the
Peak Signal-to-Noise Ratio (PSNR) for measuring the overall reconstruction quality, the
Structural Similarity Index (SSIM) for edge sharpness, and the % of non-zero elements
(NNZ) for measuring sparsity. Considering that the convolutional coefficient maps are in
fact a collection of Md sparse tetrahedrons ∈ RM×N×L×T , compared to the single sparse
tetrahedron of the SSR model, then the sparsity of the convolutional coefficient maps will
be measured as

sparsity = maxMd
m=1

‖XXXm‖0
MNLT

. (22)

This is, the sparsity of the convolutional solutions will be the maximum sparsity of the
individual coefficient maps.

3.3 Sparse Representation Quality Performance

First we test the performance of the proposed CSC4D method for sparsely representing a SV,
without decimation. For this case, H = I in Eq. (2) and (3). The number of convolutional
elements was fixed to Md = 30 and the dictionary sizes were fixed to dM = dN = dL = 8 and
dT = 3. For both methods, CSC4D and SSR, the parameter λ was varied in order to get
the reconstruction quality in function of the sparsity level. All other regularizer parameters
were fixed to optimal values.

Fig 3 shows the sparse representation performance, for both datasets, for both frame-
works. However, the main tendency is conserved. The proposed CSC4D method outper-
forms the SSR approach by up to 20dB, with with little evident difference between using
the DCT or W temporal compression.

3.4 Super Resolution Performance

The second test was to evaluate the performance of the proposed CSC4D method at recov-
ering SVs from a spatially decimated version. For this work we set α = 2, β = 2 and γ = 1
so ṡ ∈ R64.64.16.8. All the regularizer parameters were fixed to optimal values. Finally, we
only used the DCT time compression for the SSR model, for simplicity of the comparisons.
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Figure 4: Example reconstructed frames with the CSC4D and SSR methods, for the datasets
(a) Boxes and (b) Toy Truck, and some close-up details, (c) and (d)
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Figure 5: Example reconstructed frames with the CSC4D and SSR methods, for the datasets
(a) Boxes and (b) Toy Truck, 256× 256 version, and some close-up details, (c) and (d)

.



For the Boxes dataset, the best reconstruction qualities were 30.07dB for CSC4D and
29.23dB for SSR. For the Toy Truck dataset, the best reconstruction qualities were 39.52dB
for CSC4D and 37.08dB for SSR (see Fig. 4(a) and 4(b)). Besides outperforming the
state-of-the-art method in PSNR values, the proposed CSC4D also outperforms SSR in
edge reconstruction, as seen in Fig. 4(c) and 4(d). Note the sharp edges in the images
reconstructed with the CSC4D method, while the SSR’s reconstructed images have blurred
edges.

The same experiment was recreated with higher resolution versions of the same datasets,
256×256 of spatial resolution. For the Boxes dataset, the best reconstruction qualities were
35.93dB for CSC4D and 33.48dB for SSR. For the Toy Truck dataset, the best reconstruction
qualities were 46.48dB for CSC4D and 44.53dB for SSR (see Fig. 5(a) and 5(b)). Again,
the proposed CSC4D generates sharper edges than the state-of-the-art approach (see Fig.
5(c) and 5(d)). The edge sharpness can be measured using SSIM, as shown in Table 1.

CSC4D SSR

Mean Std Mean Std

Boxes 0.97 5.8× 10−4 0.94 1.0× 10−3

Toy Truck 0.97 2.1× 10−3 0.93 8.3× 10−3

Boxes 256× 256 0.98 2.7× 10−4 0.92 8.4× 10−4

Toy Truck 256× 256 0.99 1.0× 10−3 0.97 2.9× 10−3

Table 1: Mean SSIM and standard deviation for the 8-frame collection, using both frame-
works and four datasets.

4 Conclusions

The CSC3D approach, created for sparsely representing SIs, can be easily scaled to represent
the SVs as 4D datasets, without introducing new temporal operators. The proposed CSC4D
method profits on CSC’s invariance to shifting and deformation, leading to better qualities
when sparsely representing SVs and recovering SVs from decimated versions. The proposed
CSC4D method improves the definition of the reconstructed edges, outperforming the state-
of-the-art. This improved sharpness improves the use and processing of the recovered SVs.
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