

- The user's immersive ascension will gradually increase as the number of views ** increase, but the amount of data will be multiplied. In order to reduce the increased data, more effective 3D video coding scheme is needed to adopt. The emergence of multi-view video plus depth (MVD) format effectively alleviates 2000 this problem. However, the view synthesis process of coding is relatively complex. [§] 15000
- Motivation: In order to solve the above problems, it is necessary to design the $\frac{1}{2}$ 1000 ** rapid depth map coding technology based on 3D-HEVC to accelerate the view synthesis speed and improve the real-time coding. Most recently, considering that convolutional neural network (CNN) is suitable for image and video processing, learning-based methods are introduced to reduce the encoding complexity.

2.1 Layer-classification model

••• prediction value of the CNN-SENet.

Fast Depth Intra Coding based on Layer-classification and CNN for 3D-HEVC

Chang Liu^{*,+}, Kebin Jia^{*,+}, Pengyu Liu^{*,+}

*Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China ⁺Beijing Laboratory of Advanced Information Networks, Beijing, 100124, China

changliu55@126.com, {kebinj, liupengyu}@bjut.edu.cn

1. INTRODUCTION

2. PROPOSED METHODS

J	(

	Mitter	ANT ON PROV	2005	CANON TECHNIQUE
		 R V R R V 	DO(Textu SO(Textur DO(Depth SO(Depth	re+Depth) re+Depth))
/39	QP	35/42	4	0/45

31 Compa	rison	of Con	nnlevi	ty Redu	ctior					
	Coding Time (s)			L						
Sequences	QP	Ori	ginal	[15]	Proj met	posed thod	ΔT	1 (%)	ΔT_2 (%)	
	(25, 34)	2048	8.7140	1763.1230	1652.1660		19.4		6.3	
Dolloopo	(30, 39)	216	5.4970	1868.6219	1703	1703.9750		21.3	8.8	
Danoons	(35, 42)	216	5.6470	1897.7074	1696	1696.0190 2		21.7	12.6	
	(40, 45)	219	1.4180	2001.5970	1749	9.9350	2	20.2	12.6	
	(25, 34)	1908	8.9490	1613.8007	1518	8.7080	2	20.4	5.9	
Vanda	(30, 39)	201.	3.1110	1756.2975	1608	1608.6930		20.1	8.4	
Kenuo	(35, 42)	2014	4.7910	1696.0597	1598	1598.7050		20.7	5.7	
	(40, 45)	2119	9.9560	1731.1571	1663	3.6870	2	21.5	3.9	
	(25, 34)	460.	5.7930	3991.5266	354().9400	2	23.1	11.3	
Dermon Hell?	(30, 39)	489	7.1340	4404.3205	3719	3719.2050		24.1	15.6	
Poznan_Hall2	(35, 42)	4893	5.8400	4482.4965	3914	3914.7770		20.1	12.7	
	(40, 45)	545	7.2290	4819.6724	4116	5.4380	2	24.5	14.6	
	(25, 34)	7379	9.7950	7145.7595	5951	1.7040	1	9.4	16.7	
DormonStread	(30, 39)	7462	2.3270	6802.1880	5788.8240		2	22.4	14.9	
PoznanStreet	(35, 42)	642	1.9440	5570.6224	5065	5065.7090		21.1	9.1	
	(40, 45)	601	7.8040	4877.5370	4744	1.8982	2	21.2	2.8	
	(25, 34)	568	7.2920	4758.9306	4618	8.7580	21.2 18.7		2.9	
Undo-Dancer	(30, 39)	538.	3.3720	4510.2279	441().6640	1	8.1	2.2	
Undo-Dancer	(35, 42)	5314	4.5220	4416.1474	4275	5.0780	/80 19.6		3.2	
	(40, 45)	535	1.1440	4383.6930	4271	1.4720	2	20.2	2.6	
Avera	ge						20.9		8.7	
3.2 Comparison of RD Performance										
Sequences	video 0	video 1	video 2	video PSNR video bitrat	t vi	/ video PSNR / e total bitrate		synth total	PSNR / bitrate	
Balloons	0.0%	0.0%	0.0%	0.0%		0.5%		8	8.3%	
Kendo	0.0%	0.0%	0.0%	0.0%		0.5%	.5% 3		3.9%	

Sequences	video 0	video 1	video 2	video PSNR / video bitrate	video PSNR / total bitrate	synth PSNR / total bitrate	
Balloons	0.0%	0.0%	0.0%	0.0%	0.5%	8.3%	
Kendo	0.0%	0.0%	0.0%	0.0%	0.5%	3.9%	
Poznan_Hall2	0.0%	0.0%	0.0%	0.0%	0.1%	3.8%	
PoznanStreet	0.0%	0.0%	0.0%	0.0%	0.2%	3.3%	
Undo-Dancer	0.0%	0.0%	0.0%	0.0%	0.2%	6.4%	
1024×768	0.0%	0.0%	0.0%	0.0%	0.5%	6.1%	
1920×1088	0.0%	0.0%	0.0%	0.0%	0.1%	4.5%	
Average	0.0%	0.0%	0.0%	0.0%	0.3%	5.2%	
4 CONCLUSIONS							

- layer-classification for fast depth intra coding.
- view, video coding complexity is reduced. •

[1] Sullivan G J, Ohm J R, Han W J, et al. Overview of the High Efficiency Video Coding (HEVC) Standard[J]. IEEE Transactions on Circuits & Systems for Video Technology, 2012, 22(12):1649-1668.

[2] Qiuwen, Zhang, Zhifeng, et al. Fast 3D-HEVC encoder algorithm for multiview video plus depth coding[J]. Optik - International Journal for Light and Electron Optics, 2016. [3] Liao Y W, Chen M J, Yeh C H, et al. Efficient inter-prediction depth coding algorithm based on depth map segmentation for 3D-HEVC[J]. Multimedia Tools & Applications, 2018:1-25. [4] Liao Y W, Chen M J, Yeh C H, et al. Efficient inter-prediction depth coding algorithm based on depth map segmentation for 3D-HEVC[J]. Multimedia Tools & Applications, 2018:1-25. [5] Mário Saldanha, Gustavo Sanchez, César Marcon, et al. FAST 3D-HEVC DEPTH MAPS INTRA-FRAME PREDICTION USING DATA MINING[C]// IEEE International Conference on Acoustics. IEEE, 2018.

[6] Dou H, Chan Y L, Ji K B, et al. Segment-based view synthesis optimization scheme in 3D-HEVC[J]. Journal of visual communication & image representation, 2017, 42:104-111.

This work was supported in part by the Project for the National Natural Science Foundation of China under Grants No. 61672064, and Beijing Laboratory of **Advanced Information Networks under Grants No. 040000546618017.**

RESULTS

This paper studies the problem of VSO-based iterative search of all possible quad-tree partitions and proposes a CNN scheme based on

By combining the layer-classification model and CNN-SENet to predict the CU partition of all coding units (CUs) for depth map at a specific

Experimental results show that the proposed method can reduce 20.9% encoding time without any significant loss for the 3D video quality.

5. REFERENCES

6. ACKNOWLEDGEMENTS