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Introduction
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Compressive sensing

CS imaging

y = Hf

l—} Reconstruction I—}

Post-processing

Sensing matrix H depends on the optical architecture.
Inverse ill posed problem

f = argmin,||Hx — y||§ + T||<I>X||1
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Sensing model — General scheme

Acquisition optics High-resolution Sensing optics Low-resolution
Hs codification H1 detector
H2 D

(y)! = DH;(H,) Haf

F € RM*N h, € {0,1}9
(y)'] [DPH;(H,)'Hs Hy € ROMY 4, € (0,1)x0
y = (y)? _ DH, (H,)*H; f = Af H, = diag(h,) D € {0,1}5%F

w*|  |DH,H,)H,



Sensing model — Super-resolution systems
Fan beam computed

Grayscale imaging tomography
Hi =H3 =1, D € {0,1}¢/16xQ Hy = Igy D € {0,1} (1/+)0ax0d
Q=P=MN h, € {0,1}° S = (1/4)6d h, € {0,1}¢

Coded aperture
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Proposed reconstruction model
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Proposed reconstruction model
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Proposed reconstruction model
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Proposed reconstruction model

Coded aperture

A N Fast LR
—— . :
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approximation via CNN

f = argmin,||Hx — y||§ + 1|l ®xl|, + 7, ||f_— x||2



Simulation and Results

« F € R?5%%256 For the grayscale scheme
« F € R128%128 For the CT scheme.

. K=1{2468}

* Error metrics: PSNR and SSIM

» Solved using Gradient projection for sparse
reconstruction (GPSR)
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Results Grayscale imaging
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Results Grayscale imaging

Ground tru’ch

12
hans.garcia@correo.uis.edu.co



Results Fan beam

SSIM
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Results Fan beam computed tomography

Ground truth
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Conclusions

« This paper proposed a mathematical sensing model for the systems that
acquire low-resolution compressive measurements from a high-resolution
codification.

* In this work was proposed to include this reconstruction into an 12 fidelity
regularizer in the traditional 12 — |1 optimization problem

* The proposed mathematical model gains up to 3.7dB in averaged PSNR
against the use of the traditional I2 — 11 approach

* Inthe case that use a blur version of the input scene, the proposed
approach gains up to 9dB in averaged PSNR against the use of the
traditional 12 — |1 approach.
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