Estimating Structural Missing Values via Low-tubal-rank Tensor Completion

Hailin Wang, Feng Zhang, Jianjun Wang and Yao Wang

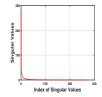
May 4-8, ICASSP 2020 Tensor Based Signal Processing

Tensors in real world

(c) RGB Image

Experiments

Low-tubal-rank property



Hailin Wang, Feng Zhang, Jianjun Wang and Yao Wang

Estimating Structural Missing Values via Low-tubal-rank Tensor G

Low-tubal-rank tensor completion

The TNN minimization model [Zhang et al, 2016; Lu et al, 2018]:

$$\min_{\mathcal{X}} \|\mathcal{X}\|_{\star} \text{ s.t. } \mathcal{P}_{\Omega}(\mathcal{X}) = \mathcal{P}_{\Omega}(\mathcal{T})$$

Notice: TNN minimization method considers the low-tubal-rankness of the original tensor only, some other structural information are not be used.

Motivation: sparsity-based structure in the missing entries. For examples, chemical measurements, movie rating, (medical) survey data, sensor network, etc.

Our model:

$$\min_{\mathcal{X}} \|\mathcal{X}\|_{\star} + \lambda \|\mathcal{P}_{\Omega^{c}}(\mathcal{X})\|_{1} \text{ s.t. } \mathcal{P}_{\Omega}(\mathcal{X}) = \mathcal{P}_{\Omega}(\mathcal{T})$$

Notice: it degenerates to the original tensor completion model when $\lambda = 0$, which means there is no structural difference between the observed and missing values.

Theorem

Let \mathcal{T}_0 be the ground truth tensor and Ω be the support set of the observed entries. Assume that structured observations satisfy $\mathcal{P}_{\Omega^c}(\mathcal{T}) = \mathbf{0}$. Then, for any tensor norm $\|\cdot\|$, we have

$$\|\mathcal{T}_2 - \mathcal{T}_0\| \le \|\mathcal{T}_1 - \mathcal{T}_0\|,$$

where

$$\mathcal{T}_1 = rg \min_{\mathcal{X}} \|\mathcal{X}\|_{\star} \ s.t. \ \mathcal{P}_{\Omega}(\mathcal{X}) = \mathcal{P}_{\Omega}(\mathcal{T}),$$

 $\mathcal{T}_2 = rg \min_{\mathcal{X}} \|\mathcal{X}\|_{\star} + \lambda \|\mathcal{P}_{\Omega^c}(\mathcal{X})\|_1 \ s.t. \ \mathcal{P}_{\Omega}(\mathcal{X}) = \mathcal{P}_{\Omega}(\mathcal{T}).$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

Suppose that \mathcal{T}_0 satisfies the tensor incoherence conditions as defined in [Lu et al, 2019] and Ω is uniformly distributed among all sets of cardinality m and the support set of sparse component \mathcal{S}_0 of non-zero unobserved entries is uniformly distributed among all sets of cardinality s contained in Ω^c . Then, there exist numerical constants $c_1, c_2 > 0$ such that with propability as least $1 - c_1(n_{(1)}n_3)^{-c_2}$, the objective minimization problem with $\lambda = 1/\sqrt{n_{(1)}n_3}$ achieves exact recovery at $(\mathcal{X}_0, \mathcal{S}_0)$ provided that

$$\operatorname{rank}_{t}(\mathcal{X}_{0}) \leq \frac{\rho_{r}n_{(2)}n_{3}}{\mu\left(\log\left(n_{(1)}n_{3}\right)\right)^{2}}, \text{ and } s \leq \rho_{s}n_{1}n_{2}n_{3},$$

where ρ_r , $\rho_s > 0$ are numerical constants.

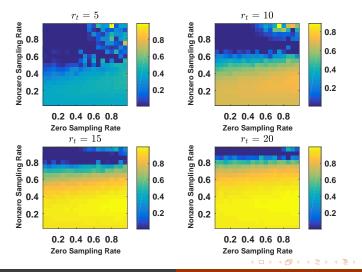
Optimization-ADMM-based Algorithm

$$L(\mathcal{X}, \mathcal{Y}, \mathcal{Z}, \mu) = \|\mathcal{X}\|_{\star} + \lambda \|\mathcal{Y}\|_{1} + \frac{\mu}{2} \|\mathcal{P}_{\Omega}(\mathcal{T}) - \mathcal{X} + \mathcal{Y} + \frac{\mathcal{Z}}{\mu}\|_{F}^{2}$$

The update process:

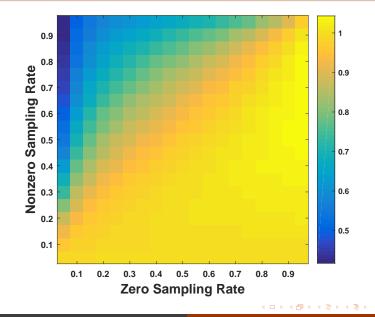
$$\begin{cases} \mathcal{X}_{k+1} = \arg\min \|\mathcal{X}\|_{\star} + \frac{\mu_{k}}{2} \|\mathcal{P}_{\Omega}(\mathcal{T}) - \mathcal{X} + \mathcal{Y}_{k} + \frac{\mathcal{Z}_{k}}{\mu_{k}}\|_{F}^{2} \\ \mathcal{Y}_{k+1} = \arg\min \lambda \|\mathcal{P}_{\Omega^{c}}(\mathcal{Y})\|_{1} + \frac{\mu_{k}}{2} \|\mathcal{P}_{\Omega^{c}}(-\mathcal{X}_{k+1} + \mathcal{Y} + \frac{\mathcal{Z}_{k}}{\mu_{k}})\|_{F}^{2} \\ \mathcal{Z}_{k+1} = \mathcal{Z}_{k} + \mu_{k}(\mathcal{P}_{\Omega}(\mathcal{T} - \mathcal{X}_{k+1}) + \mathcal{Y}_{k+1}) \end{cases}$$

Enhanced Performance: $\|\mathcal{T}_2 - \mathcal{T}_0\|_F / \|\mathcal{T}_1 - \mathcal{T}_0\|_F$ (conduct $\tau_0 = \tau_L * \tau_R$ with tubal rank r_t , where $\tau_L \in \mathbb{R}^{n \times r_t \times n}$ and $\tau_R \in \mathbb{R}^{r_t \times n \times n}$ are sparse tensors with density *d*. Set $r_t = 5$, 10, 15, 20, n = 100, and d = 0.05. The observations are subsampled from the zero and nonzero entries at various rates from 0 to 1 with interval 0.05)



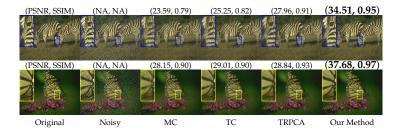
Hailin Wang, Feng Zhang, Jianjun Wang and Yao Wang

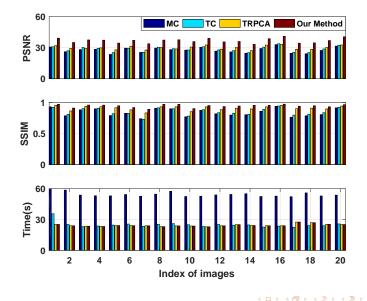
Estimating Structural Missing Values via Low-tubal-rank Tensor O



Estimating Structural Missing Values via Low-tubal-rank Tensor G

Image denoising: Salt and pepper noise





Hailin Wang, Feng Zhang, Jianjun Wang and Yao Wang

Estimating Structural Missing Values via Low-tubal-rank Tensor G

Summary:

- The structural information on missing values is useful for tensor completion;
- The proposed method has the theoretical recovery guarantee and better performance than the classical TNN minimization method;
- Sufficient experiments verify the superiority of our work.

References:

Zhang et al, 2016: Z. Zhang and S. Aeron, "Exact tensor completion using t-SVD," IEEE Transactions on Signal Processing, vol.65, no. 6, pp. 1511-1526, 2016.

Lu et al, 2018: C. Lu, J. Feng, Z. Lin, and S. Yan. "Exact low tubal rank tensor recovery from Gaussian measurements," In Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI), AAAI Press, pp. 2504-2510, 2018.

Lu et al, 2019: C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin and S. Yan, "Tensor robust principal component analysis with a new tensor nuclear norm," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 4, pp. 925-938, 2019.

æ

THANKS!