

 ¹Institute of Signal Processing, Johannes Kepler University Linz, Austria
²Silicon Austria Labs (SAL), Linz, Austria
³Josef Ressel Centre for Thermal NDE of Composites, University of Applied Sciences Upper Austria, Wels, Austria
⁴Research Center for Non Destructive Testing, Linz, Austria

45th IEEE International Conference on Acoustics, Speech and Signal Processing

May 4-8, 2020

Introduction O	Model based approach 00	Hybrid approach 0000	Experiments 0000
Outline			

2 Model based approach

3 Hybrid approach

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Introduction				
	mh	00	tion	
			5	

Problem description

Goal

Analysis, detection of structural imperfections of materials.

Jac.

3

Problem description

Linear model

- d: noisy surface temperature measurements after heating.
- u: initial temperature distribution inside the material.
- Φ : forward mapping that models the heat conduction.
- The corresponding discrete linear inverse problem:

 $\Phi u = d.$

Challenges in thermographic imaging

- Numerical: it is a discrete ill-posed inverse problem.
- Computational: it is a large-scale problem.
- Modeling: how to derive Φ?

Introduction	Model	based	approac
	•0		

Virtual wave concept

Two-stage reconstruction process¹

Transformation of the thermographic imaging problem:

$$\widetilde{\mathbf{v}} = \arg\min_{\mathbf{v}} \{ \|\mathbf{d} - \mathbf{K}\mathbf{v}\|_2^2 + \lambda^2 \cdot \Omega(\mathbf{v}) \}.$$

Q Applying ultrasonic imaging techniques to the new problem:

$$\widetilde{\mathbf{u}} = \arg\min_{\mathbf{u}} \{ \| \widetilde{\mathbf{v}} - \mathbf{M} \mathbf{u} \|_2^2 + \mu^2 \cdot \Omega(\mathbf{u}) \}$$

One-stage reconstruction process

By $\mathbf{\Phi} = \mathbf{K}\mathbf{M}$, the full reconstruction can be written as follows:

$$\widetilde{\mathbf{u}} = \arg\min_{\mathbf{u}} \{ \|\mathbf{d} - \mathbf{\Phi}\mathbf{u}\|_2^2 + \nu^2 \cdot \Omega(\mathbf{u}) \}.$$

¹P. Burgholzer, M. Thor, J. Gruber, and G. Mayr. Three-dimensional thermographic imaging using a virtual wave concept. Journal of Applied Physics, 121(10):105102 1–11, 2017. Introduction 0 Model based approach ⊙● Hybrid approach 0000 Experiments 0000

Two-stage reconstruction process

500

Experiments 0000

Two-stage reconstruction process

Pros

- The virtual waves are invariant to the thermal diffusivity α .
- K is well defined and small compared to the image dimension.
- The first stage can be applied independently on each cross-section.

Cons

- It is difficulty to apply sparse numerical solvers in the second stage.
- There is no proper inversion for M⁺, just approximations to it.
- The matrix **M** is either too large (T-SAFT), or not explicitly formed (Stolt's f-k migration).
- Estimating the optimal regularization parameter μ is challenging.

Introduction	Model based approach	Hybrid approach	Experiments
O	00	●000	0000

Reconstruction in 2D

- **(**) Extract the virtual waves $\tilde{\mathbf{v}}$ from the measurements **d**.
 - utilize the sparse and non-negative nature of $\widetilde{\boldsymbol{v}};$
- 2 Estimate the temperature distribution ũ by machine learning:
 - \bullet input: thermal diffusivity invariant virtual waves $\widetilde{\boldsymbol{v}}$
 - $\bullet\,$ output: approximation of $\widetilde{\boldsymbol{u}}$

Reconstruction in 3D

- Estimate the temperature distribution in each 2D cross-section.
- 3D reconstruction from the sequence of 2D images.

ntroduction	Model based approach	Hybrid approach	Experiments
		0000	

Deep learning by u-net

Figure: Architecture of the compact u-net.

★ E ► < E ►</p>

э

Deep learning by u-net

Compact architecture

- 3 layers in the contracting path
- 3 layers in the expansive path
- 16 filters in the first (single channel) layer
- Overall number of weights: 109,000

Extensive architecture

- 5 layers in the contracting path
- 5 layers in the expansive path
- 16 filters in the first (single channel) layer
- Overall number of weights: 1.8 million

Introduction	Model based approach	Hybrid approach	Experiments
O	00	00●0	0000

Data sets

Training data

- 3,000 simulated noise free samples with adiabatic boundary conditions.
- 2-5 square-shaped defects with side lengths between 2 and 6 pixels.
- The resolution of each image is 256×64 .
- 10 different versions of each sample were used, representing SNRs from -20 dB to 70 dB in 10 dB steps.
- $\bullet~$ Overall number of training images: 10×3000

Testing data

- 1,000 simulated samples similar to the training images.
- Overall number of test images: 10×1000
- Real measurement data containing 256 images of size 256 imes 64.

・ロト ・ 同ト ・ ヨト ・ ヨト ・

э

Introduction	Model based approach	Hybrid approach	Experiments
O	00	000●	0000
Training c	of the u-net		

Training and validation

- 24,000 samples were used for training.
- 6,000 samples were kept for validation and model selection.
- Training can be stopped after 20 epochs.

Figure: The loss curves of the proposed u-net variants.

æ

< ≣ >

State-of-the-art model based approaches

Numerical solvers for sparse approximation

- SPGL1 is for large-scale one-norm regularized least squares.
- YALL1 is a solver for basic/group sparse reconstruction.
- ASP is for solving several variations of the sparse optimization.
- **ADMM** (alternating direction method of multipliers) is a very general algorithm for solving sparse approximation problems.
- SALSA is a fast ADMM type algorithm for image reconstruction.
- IRfista is a recent numerical solver for large-scale problems.

Tested model based approaches

- fkmig: Stolt's f-k migration without sparse regularization.
- tsaft: Snythetic Aperture Focusing Technique in the time domain.
- reg tsaft: same as tsaft, but with sparse regularization.

Figure: Reconstructions of a 0 dB SNR example from the test set.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Introduction	Model based approach	Hybrid approach	Experiments
O	00	0000	0●00

Simulation results

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Introduction	Model based approach	Hybrid approach	Experiments
O	00	0000	00●0

Real measurement data

Figure: Parameters of the phantom.

Model based approach

Hybrid approach 0000 Experiments 00●0

Real measurement data

Figure: Model based reconstruction via ADMM and Stolt's f-k migration.

	du	io	

Model based approach

Hybrid approach 0000 Experiments

э

Real measurement data

Figure: Hybrid reconstruction (red), groundtruth volume (blue).

Introduction	Model based approach	Hybrid approach	Experiments
O	00	0000	000●
References			

- P. Kovács, B. Lehner, G. Thummerer, G. Mayr, and Huemer M. Burgholzer, P., A hybrid approach for the thermographic imaging with deep learning, 2019, [Online], Available: https://codeocean.com.
- P. Burgholzer, M. Thor, J. Gruber, and G. Mayr. Three-dimensional thermographic imaging using a virtual wave concept. Journal of Applied Physics, 121(10):105102 1–11, 2017.
- S. Gazzola, P. C. Hansen, and J. G. Nagy. IR Tools: a MatLab package of iterative regularization methods and large-scale test problems. Numerical Algorithms, pages 1–39, 2018.
- O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. International Conference on Medical image computing and computer-assisted intervention, Springer, pp. 234–241, 2015.
- J. F. Claerbout, editor. EARTH SOUNDINGS ANALYSIS: Processing versus Inversion. Blackwell Scientific Publications, Cambridge Center, Cambridge, MA, USA, 2004.