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Motivations for Physical Identifiers

ä Secure secret-key storage and execution in Non-volatile Memory (NVM)
are not trivial due to

I non-uniform key generation,

I possible physical access to the storage medium,

I information leakage via side channels.
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Motivations for Physical Identifiers (Cont’d)

ä Alternative: Physical unclonable functions (PUFs) such as fine
variations in the oscillation frequency of ring oscillators (ROs) for
on-demand key generation so that

I invasive attacks permanently change the identifier output,

I randomness is provided by uncontrollable manufacturing variations,

I new identifiers can be inserted when there is leakage.
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PUF Application 1

• Encryption/Decryption with Physical Unclonable Functions (PUFs)
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NVM= Non-Volatile Memory
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PUF Application 2

• PUF Outputs Used As a Local Key for a Digital Device
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Fuzzy Commitment Scheme (FCS)
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I Secret key S and helper data W have to be independent,

I Block error probability should satisfy PB = Pr[S 6= Ŝ] ≤ 10−9,

I S should be uniformly random with entropy of 128 bits.
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Main Contributions
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Main Contributions (Cont’d)

ä Propose a new set of 2D orthogonal transforms that simultaneously

ä provide high decorrelation efficiency
(i.e., small secrecy and privacy leakage);

ä increase reliability significantly (i.e., smaller bit error probability);

ä decrease hardware complexity
(i.e., smaller hardware area due to No Multiplications);

ä obtain significantly smaller block-error probability PB << 10−9 than
previous FCS designs with the same or smaller channel code rate.
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Transform Coding Steps
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ä Apply a transform Tr×c(·) to decorrelate X̃L/Ỹ L,

ä Each scalar quantizer satisfies the uniformity property
Pr[Quant(T̂i) = (q1, q2, . . . , qKi)] =

1
2Ki

for i = 1, 2, . . . , L,
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Transform Coding Steps (cont’d)
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ä The noise components have zero mean, so use Gray mapping,

ä Concatenate all extracted bits to obtain Xn/Y n,

ä Error symbols Ei = Xi ⊕ Yi need not be independent or identically
distributed (i.i.d.).
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New Set of Transforms

ä Consider an orthogonal matrix A with elements 1 or −1 and of size k × k,
i.e., AAT = I.

ä The following matrices are also orthogonal:[
A A
A −A

]
,

[
A A
−A A

]
,

[
A −A
A A

]
,

[
−A A
A A

]
. (1)

ä Choose k=4 for exhaustive search of matrices A and apply the matrix
extension methods in (1) twice to obtain 12288 unique orthogonal
transforms of size 16×16 with elements 1 or -1.
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Ring Oscillator Dataset

ä We use a public dataset1 with ring oscillator (RO) outputs.

ä The dataset contains multiple measurements of 16×16 arrays of ROs,
e.g., L = 255, with identical circuit designs.

ä Measurements are taken from multiple devices from the same chip family
under ideal temperature and voltage conditions.

1A. Maiti, J. Casarona, L. McHale, and P. Schaumont, “A large scale characterization of
RO-PUF,” in IEEE Int. Symp. on Hardware-Oriented Security and Trust, Anaheim, CA, USA,
June 2010, pp. 94-99.
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Bit Error Probabilities

ä We compare bit error probabilities of the transform coefficients for the
selected transform (ST) from the new set, the discrete cosine transform
(DCT), and the discrete Walsh-Hadamard transform (DWHT).
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Transform Comparisons

ä New transforms, including the DWHT, do not require multiplications
(because their transform matrix elements are 1 and -1), unlike other
transforms, so the hardware cost is significantly decreased;

ä Reliability of the ST is considerably higher than all other transforms;

ä All transforms perform well in terms of the decorrelation efficiency and
pass most of the national institute of standards and technology (NIST)
randomness tests.
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Code Design for the FCS with New Transforms

ä Take advantage of STs’ higher reliability by combining them with
binary linear block codes with bounded minimum distance decoders
(BMDD) for low complexity.

ä A BMDD for a block code can correct all error patterns with at most

e =
⌊
dmin−1

2

⌋
errors.

ä We use a Bose-Chaudhuri-Hocquenghem (BCH) code with blocklength
n = 255 = L bits, code dimension k = 131 > 128 bits, and minimum
distance dmin = 37 in the FCS.

ä This BCH code achieves a block error probability of
PB ≈ 2.860× 10−12 << 10−9,
which is the smallest PB in the literature achieved by codes with the
same or smaller code rates.

Onur Günlü and Rafael F. Schaefer: Low-complexity and Reliable Transforms for Physical Unclonable Functions 14



Conclusion

ä Proposed a new set of 2D orthogonal transforms that simultaneously
satisfy

ä negligible secrecy leakage;

ä small privacy leakage;

ä large secret key size;

ä small block error probability;

ä low hardware complexity constraints.

ä In combination with a BCH code in the FCS, the ST provides the smallest
block error probability in the PUF literature.
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