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Introduction-Regularization and Data Augmentation

® Regularization
*  L1/L2 regularization
*  Dropout [N. Srivastava, et. al, IMLR, 2014]

® Data Augmentation
* SpecAugment [D. S. Park, et. al., INTERSPEECH 2019]
* Acoustic Simulator [C. Kim, et. al., INTERSPEECH 2017]
* Vocal Tract Length Perturbation, Speed Perturbation, etc.

® Data augmetnation itself can be considered as a way of applying regularization.
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Motivation of Small Energy Masking
® Regularization is important for training large-size neural network models.
® |n the conventional input-dropout, masking is applied completely randomly to the input features.

® |n speech features, time-frequency bins with small energy may be more adversely affected by
distortion or noise [C. Kim and R. M. Stern, ASRU 2009].

® - Applies masking more frequenty to time-frequency bins with smaller energy.
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Motivation of Small Energy Masking- Filterbank Energy e[m, c] and Peak Filter
Bank Energy e,

e The filter bank energy e[m, c] in each time-frequency bin is defined by:

K/2
elm,c| = E | X [m, e?“F]|* M.[e?“*]
— I
k=0 I
Where 7 8000.0 }
I o SEL3 E: JNINL (R N
® m: Frame index € 4000.0{ g P ? L B
® ¢ : Filterbank channel index 3 2000.0 y 3 é i‘é@ 3 : "
® X|m,e'*] : Short-time Fourier Transform of the speech signal £ S e e B o4&
® M [e’*] :The frequency response of the c-th Filterbank channel Qe 1.0 : Tirif(s) 20 4.0
m

e The peak filterbank energy e, is defined to be the 95-percentile value of e[m, c] for each utterance. [C. Kim
and R. M. Stern, ASRU 2009]
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Motivation of Small Energy Masking-Distribution of Filterbank Energy

® ' : The ratio of filterbank energy e[m, c] to the peak

filterbank energy €peq in dB: Probability Density Function (PDF) of 7]

elm,c
1= 1 (elm ) = 10105, (221
peak 0.020

0.0151

® The Probability Density Function (PDF) of 7] is
shown on the right-hand side: 0.0101
To calculate the statistical information shown in this slide, and in the

next slide, we randomly selected 1,000 utterances from the
LibriSpeech training set.

0.005+

0.000

100 —80 —60 —40 —20 0 20
71: Ratio to epeq in dB

® The distribution mainly exists from -100 dB up to 20
dB.
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Motivation of Small Energy Masking - Cumulative density function and energy
portion below the threshold

® The cumulative function 7] is shown on the right-hand side.

® \Wedefine 7e(7:tn) asthe portion of energy below the
threshold 7th as shown blow:

1.0 4 m—re[n]

* Cumulative Density Function

Zf(é[m?c])‘(mh e[""n: C] 0.8

> e[m, ] 0.61

re(Min) =

® From this figure, if we select time-frequency bins whose
energy is 20 dB below from e, they comprise roughly 70 0.2
percent of all the bins, and 60 percent of the energy.

0.0 -, : : ; .
—100 —80 —60 —40 =20 (] 20
7: Ratio to €.,y in dB
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Small Energy Masing Algorithm - Algorithm Overview

e Selects a random energy ratio threshold (let's ca Mt ) for for each utterance uniformly from the
following interval.

nen ~ U(Na, 1b)

e U : Uniform distribution
® Tla : The lower bound. We use the value of -80 dB.
® 1), : The upper bound. We use the value of O dB.

e All the feature values below this ratio threshold is masked to have zero values.

e The unmasked feature values are scaled so that the sum is maintained.

Samsung Research



Small Energy Masing Algorithm - Conventional Pipeline

® As a baseline system, we use the following power-mel feature pipeline.
[C. Kim et. al., ASRU 2019, C. Kim et. al. INTERSPEECH 2019]

x[m, ] input feature
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Small Energy Masing Algorithm - Conventional Pipeline

® As a baseline system, we use the following power-mel feature pipeline.
[C. Kim et. al., ASRU 2019, C. Kim et. al. INTERSPEECH 2019]

x[m, ] input feature

K/2
Filterbank Energy e[m,c] = Z | X [m, ™% Me[e?“*]
k=0
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Small Energy Masing Algorithm - Conventional Pipeline

® As a baseline system, we use the following power-mel feature pipeline.
[C. Kim et. al., ASRU 2019, C. Kim et. al. INTERSPEECH 2019]

x[m, ] input feature

(
1
Power-Mel Feature p[ﬂl, C] = 6[??1-_._ C] 15
\,
(
K/2
Filterbank Energy e[m,c] = Z | X [m, & “F])* M.[e™*]
k=0
\,
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Small Energy Masing Algorithm - Conventional Pipeline

® As a baseline system, we use the following power-mel feature pipeline.
[C. Kim et. al., ASRU 2019, C. Kim et. al. INTERSPEECH 2019]

4 N\
Just performs scaling and shifting of the feature globally. z[m, d input feature
Not an utterance-by-utterance mean variance normalization \ '
.
4
a1
Power-Mel Feature p[-m., C] = 6[??1-_._ C] 15
.
7
K/2
Filterbank Energy elm.c] =" |X[m, ]2 Me[e’¥]
k=0
.
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Small Energy Masing Algorithm - Masking Application

masked feature

input feature F[m] = {,;vg[ﬂm,5 c] ’0 <e<C— 1}

speech
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Small Energy Masing Algorithm - Masking Application

masked feature

input feature F[m] = {,;vg[ﬂm,5 c] ’0 <e<C— 1}

epeak = The 95-th percentile of ¢[m, c]

speech
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Small Energy Masing Algorithm - Masking Application

masked feature

input feature F[m] = {,;vg[ﬂm,5 c] ’0 <e<C— 1}

Nen ~ U(Na, 1)

speech
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Small Energy Masing Algorithm - Masking Application

masked feature

input feature F[m] = {,;vg[ﬂm,5 c] ’0 <e<C— 1}

(& & 0
th peak e

speech
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Small Energy Masing Algorithm - Masking Application

masked feature

1, e[m, c] > e,
phm.d =3 I e
, e[m, ] < esn. i

input feature F[m] = {,;vg[ﬂm,5 c] ’0 <e<C— 1}

speech
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Small Energy Masing Algorithm - Masking Application

masked feature

x,[m, e] = z[m, e|p[m, c|

input feature F[m] = {,;vg[ﬂm,5 c] ’0 <e<C— 1}

speech
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Small Energy Masing Algorithm - Masking Application

_ Zfor each utt, [ﬂfl, C]

r=
Zforeach utt. T [?n* C] \\

masked feature

input feature F[m] = {,;vg[ﬂm,5 c] ’0 <e<C— 1}

speech
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Small Energy Masing Algorithm - Masking Application

""""""""""""""""""""""""""""""""""""""""""" mw [ Tsem[m, €] = ra,[m, ] ]

input feature F[m] = {,;vg[ﬂm,5 c] ’0 <e<C— 1}

speech
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Small Energy Masing Algorithm - Original Spectrogram
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The ratio of the number of masked time-frequency : 0 %
The ratio of the masked energy : 0 %
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Small Energy Masing Algorithm — Spectrogram with 7}¢n of -40 dB
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The ratio of the number of masked time-frequency bins : 38 %
The ratio of the masked energy : 25 %
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Small Energy Masing Algorithm — Spectrogram with 7}¢n of -20 dB
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The ratio of the number of masked time-frequency bins : 75 %
The ratio of the masked energy : 62 %
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Small Energy Masing Algorithm — Spectrogram with )¢5 of 0 dB
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The ratio of the number of masked time-frequency bins : 95 %
The ratio of the masked energy : 88 %
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Experimental Results - Speech Recognition System Structure

® The speech recognition system is based on the attention-based
encoder-decoder model, modified from our previous system[C. Kim et.
al., ASRU 2019].

® 6 LSTM layers in the encoder, and 1 LSTM layer in the decoder are
used. The unit size is 1024.

® Pre-training strategy is employed [A. Zeyer et. al. INTERSPEECH 2018].

® Power-mel feature is employed [C. Kim et. al. INTERSPEECH 2019].

> Decoder
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Experimental Results - Small Energy Masking: Word Error Rate (WER)

dependence on b
Nth ~ H(na,

® |In this experiment, T]a is fixed to at -80 dB.
® Dependence on b s tested.
® [f T]b becomes larger than 20 dB, performance starts degrading.

b -60 dB -40 dB -20dB 0 dB baseline

test-clean 4.03 % 4.05 % 3.89 % 3.72 % 4.19 %
test-other 13.64% | 13.69% | 1274 % | 11.65% | 13.47 %
average 8.84 % 8.87 % 8.32 % 7.69 % 8.83 %
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Experimental Results - Small Energy Masking: dependence on 7.

Neh ~ U )

® In this experiment, 7, is fixed to at O dB.
® Dependence on 7la is tested.

Na -20 dB -40 dB -60 dB -80 dB | baseline

test-clean || 45.15% | 6.57 % 4.07 % 3.72 % 4.19 %
test-other || 77.71 % | 2043 % | 1273 % | 11.65% | 13.47 %
average 6143 % | 13.5% 8.40 % 7.69 % 8.83 %
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Experimental Results - Small Energy Masking: selection of 7« and s

® From the previous experiments, we observe that 7la =-80dB Tb =0 dB are good choices.
® From the following probability density function of 7] , this distribution covers the entire range.
|

0.0204

0.0154

0.0104

0.005

I
I
I
0.000 - . v v v T
—100 —Bo —60 —40 —20 ‘] 20
I
I
I

1 1: Ratio to €. in dB
|

Tla Tb
® The relative performance improvement over the baseline is 11.2 % and 13.5 % on LibriSpeech
test-clean and test-other respectively.
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Experimental Results — Fixed Threshold Masking

® \What happens if we use a fixed threshold ( 7tr ) rather than a random threshold?

baseline
Ntk -80 dB -70 dB -60 dB -50 dB
—oo dB
test-clean 4.19 % 4.27 % 4.26 % 4.31 % 4.52 %
test-other 1347 % | 13.92% | 1393 % | 14.09 % | 15.67 %
average 8.83 % 9.10 % 9.10 % 9.20 % | 10.10 %

® As shown in the above table, fixed threshold masking always results in performance degradation.
® From this result, we may observe that the randomization of the threshold level plays a critically
iImportant role in obtaining good performance.
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Experimental Results — Random input dropout

® We applied a conventional input dropout approach to the input layer with a different drop out rate
r.

baseline ,
r=0.1 r=0.21r=0.23
r—=20
test-clean 4.19 % 4.03 % | 4.29 % 4.27 %
test-other 1347 % | 1318 % | 13.77 % | 14.59 %
average 8.83 % 8.61 % 9.03 % 9.43 %

® The best performance was obtained when r = 0.1. However, SEM shows 7.7 % and 11.6 %
Relative WER (WERR) improvements over this random input dropout for the test-clean and test-
other respectively.
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Experimental Results — Modified shallow fusion with a Transformer LM.

® We used the modified shallow fusion [C. Kim, et. al., INTERSPEECH 2019] with a Transformer
LM [A. Vaswani, et. al., NIPS 2017].

Yo.L = arg max Z [logP (yi|2[0 : M],you)

Yo:L I=0

og Pl +(ufios P (uno)]

Ap 0.003 0.003 0.003 0.003

Alm 0.36 0.4 0.44 0.48
test-clean || 2.52% | 2.62% | 2.62% | 2.66 %
test-other || 793 % | 7.87 % | 7.87 % | 8.33 %
average 523% | 5.25% | 5.25 % | 5.50 %

® When )\, =0.003 and Alm =0.40r0.44, 2.62 % and 7.87 % WERSs are obtained for
LibriSpeech test-clean and test-other sets.
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Conclusions

® Motivation:
® Regularization is important for training the neural network model.
® Time frequency-bins with small energy may be more adversely affected by distortion or noise.
® Small Energy Masking (SEM) algorithm:
® Arandom energy threshold is generated from the uniform distribution.
® All the feature values below that threshold is masked to zero.
® The unmasked feature values are scaled so that the sum is maintained.
® Experimental Results:
® SEM shows 11.2 % and 13.5 % Relative WER (WERR) improvements on the standard LibriSpeech test-clean and
test-other sets over the baseline.
® SEM shows 7.7 % and 11.6 % Relative WER (WERR) improvements on the same LibriSpeech test-clean and test-
other sets over the random input dropout.
® With a modified shallow fusion with a Transformer-baesd LM, we achieved 2.62 % and 7.87 % WERs on the
LibriSpeech test-clean and test-other sets.
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