Provably and Efficient Manifold Gradient Descent for Multi-Channel Sparse Blind Deconvolution

Laixi Shi and Yuejie Chi

Dept.of Electrical and Computer Engineering, Carnegie Mellon University

ICASSP 2020

Carnegie Mellon University

Motivation

Image superresolution/deblurring

How to find the high-resolution original image and the blurring kernels simultaneously?

Formulation

Multi-channel sparse blind deconvolution (MSBD)

Problem Formulation: the *i*-th observed signal $y_i \in \mathbb{R}^n$ can be expressed as:

$$\boldsymbol{y}_i = \boldsymbol{g} \circledast \boldsymbol{x}_i = \mathcal{C}(\boldsymbol{g})\boldsymbol{x}_i, \quad i = 1, \dots, p,$$

- $oldsymbol{g}$ is a filter, and $oldsymbol{x}_i \in \mathbb{R}^n$ is a sparse input signal.
- p is the total number of observations, and \circledast denote the circulant convolution.

Multi-channel sparse blind deconvolution (MSBD)

Problem Formulation: the *i*-th observed signal $y_i \in \mathbb{R}^n$ can be expressed as:

$$\boldsymbol{y}_i = \boldsymbol{g} \circledast \boldsymbol{x}_i = \mathcal{C}(\boldsymbol{g})\boldsymbol{x}_i, \quad i = 1, \dots, p,$$

- \boldsymbol{g} is a filter, and $\boldsymbol{x}_i \in \mathbb{R}^n$ is a sparse input signal.
- p is the total number of observations, and \circledast denote the circulant convolution.
- $\boldsymbol{g} = [g_1, g_2, \cdots, g_n]^\top$ and circulant matrix $\mathcal{C}(\boldsymbol{g}) \in \mathbb{R}^{n \times n}$:

$$\mathcal{C}(\boldsymbol{g}) = \begin{bmatrix} g_1 & g_n & \cdots & g_2 \\ g_2 & g_1 & \cdots & g_3 \\ \vdots & \vdots & \ddots & \vdots \\ g_n & g_{n-1} & \cdots & g_1 \end{bmatrix}$$

Multi-channel sparse blind deconvolution (MSBD)

•
$$oldsymbol{Y} = [oldsymbol{y}_1, \dots, oldsymbol{y}_p] \in \mathbb{R}^{n imes p}, \ oldsymbol{X} = [oldsymbol{x}_1, \dots, oldsymbol{x}_p] \in \mathbb{R}^{n imes p}:$$
 $oldsymbol{Y} = \mathcal{C}(oldsymbol{g})oldsymbol{X}.$

• Goal: recover both the unknown signals $\{x_i\}_{i=1}^p$ and the kernel g from multiple observations $\{y_i\}_{i=1}^p$

Ambiguities

• The bilinear form of the observations:

$$oldsymbol{y}_i = (eta \cdot \mathcal{S}_j(oldsymbol{g})) \circledast rac{\mathcal{S}_{-j}(oldsymbol{x}_i)}{eta},$$

where $S_j(z)$ is the *j*-th circulant shift of the vector z, $\beta \neq 0$ is an arbitrary scalar.

Ambiguities

• The bilinear form of the observations:

$$oldsymbol{y}_i = (eta \cdot \mathcal{S}_j(oldsymbol{g})) \circledast rac{\mathcal{S}_{-j}(oldsymbol{x}_i)}{eta},$$

where $S_j(z)$ is the *j*-th circulant shift of the vector z, $\beta \neq 0$ is an arbitrary scalar.

• Challenge: Scaling and shift ambiguities $\rightarrow g$ and $\{x_i\}_{i=1}^p$ are not uniquely identifiable.

Ambiguities

• The bilinear form of the observations:

$$oldsymbol{y}_i = (eta \cdot \mathcal{S}_j(oldsymbol{g})) \circledast rac{\mathcal{S}_{-j}(oldsymbol{x}_i)}{eta},$$

where $S_j(z)$ is the *j*-th circulant shift of the vector z, $\beta \neq 0$ is an arbitrary scalar.

- Challenge: Scaling and shift ambiguities $\rightarrow g$ and $\{x_i\}_{i=1}^p$ are not uniquely identifiable.
- Goal: recover filter g and sparse inputs $\{x_i\}_{i=1}^p$, up to scaling and shift ambiguity.

Bilinear to linear

• $\mathcal{C}(\boldsymbol{g})$ is invertible ightarrow a unique inverse filter $\boldsymbol{g}_{\mathrm{inv}}$:

$$\mathcal{C}(\boldsymbol{g}_{\mathrm{inv}})\mathcal{C}(\boldsymbol{g}) = \mathcal{C}(\boldsymbol{g})\mathcal{C}(\boldsymbol{g}_{\mathrm{inv}}) = \boldsymbol{I}.$$

Bilinear to linear

• $\mathcal{C}(g)$ is invertible \rightarrow a unique inverse filter g_{inv} :

$$\mathcal{C}(\boldsymbol{g}_{\mathrm{inv}})\mathcal{C}(\boldsymbol{g})=\mathcal{C}(\boldsymbol{g})\mathcal{C}(\boldsymbol{g}_{\mathrm{inv}})=\boldsymbol{I}.$$

• Bilinear to linear: multiply $C(g_{inv})$ on both side,

$$oldsymbol{y}_i = \mathcal{C}(oldsymbol{g})oldsymbol{x}_i
ightarrow oldsymbol{g}_i = \mathcal{C}(oldsymbol{g}_{ ext{inv}})\mathcal{C}(oldsymbol{g})oldsymbol{x}_i = \underbrace{oldsymbol{x}_i}_{ ext{sparse}} \quad i = 1, \dots, p.$$

A natural formulation

Exploiting the sparsity of {x_i}^p_{i=1}: seek h that minimize the cardinality of C(h)y_i = C(y_i)h:

$$\min_{\boldsymbol{h}\in\mathbb{R}^n} \frac{1}{p} \sum_{i=1}^p \|\mathcal{C}(\boldsymbol{y}_i)\boldsymbol{h}\|_0.$$

• $\|\cdot\|_0$ is the pseudo- ℓ_0 norm: counts the cardinality of the nonzero entries of the input vector.

A natural formulation

Exploiting the sparsity of {x_i}^p_{i=1}: seek h that minimize the cardinality of C(h)y_i = C(y_i)h:

$$\min_{\boldsymbol{h}\in\mathbb{R}^n} \frac{1}{p} \sum_{i=1}^p \|\mathcal{C}(\boldsymbol{y}_i)\boldsymbol{h}\|_0.$$

- $\|\cdot\|_0$ is the pseudo- ℓ_0 norm: counts the cardinality of the nonzero entries of the input vector.
- Problematic for two reasons:
 - 1. has a trivial solution h = 0.
 - 2. the cardinality minimization is computationally intractable.

A natural formulation

Exploiting the sparsity of {x_i}^p_{i=1}: seek h that minimize the cardinality of C(h)y_i = C(y_i)h:

$$\min_{\boldsymbol{h}\in\mathbb{R}^n} \frac{1}{p} \sum_{i=1}^p \|\mathcal{C}(\boldsymbol{y}_i)\boldsymbol{h}\|_0.$$

- $\|\cdot\|_0$ is the pseudo- ℓ_0 norm: counts the cardinality of the nonzero entries of the input vector.
- Problematic for two reasons:
 - 1. has a trivial solution h = 0.
 - 2. the cardinality minimization is computationally intractable.

How to recover g_{inv} provably and efficiently ?

Our nonconvex formulation

 We propose a nonconvex optimization formulation (following [Sun, et al, 2017]¹, [Li and Bresler, 2019]²):

$$\min_{\boldsymbol{h} \in \mathbb{R}^n} f_o(\boldsymbol{h}) = \frac{1}{p} \sum_{i=1}^p \underbrace{\psi_\mu(\mathcal{C}(\boldsymbol{y}_i)\boldsymbol{h})}_{\text{convex surrogate}} \quad \text{s.t} \quad \underbrace{\|\boldsymbol{h}\|_2 = 1}_{\text{nonconvex}}$$

• Add a spherical constraint.

¹Ju Sun, Qing Qu, and John Wright. "Complete Dictionary Recovery Over the Sphere I: Overview and the Geometric Picture". In: *IEEE Transactions on Information Theory* 63.2 (2017), pp. 853–884.

²Yanjun Li and Yoram Bresler. "Multichannel sparse blind deconvolution on the sphere". In: *IEEE Transactions* on Information Theory 65.11 (2019), pp. 7415–7436.

Our nonconvex formulation

 We propose a nonconvex optimization formulation (following [Sun, et al, 2017]¹, [Li and Bresler, 2019]²):

$$\min_{\boldsymbol{h} \in \mathbb{R}^n} f_o(\boldsymbol{h}) = \frac{1}{p} \sum_{i=1}^p \underbrace{\psi_{\mu}(\mathcal{C}(\boldsymbol{y}_i)\boldsymbol{h})}_{\text{convex surrogate}} \quad \text{s.t} \quad \underbrace{\|\boldsymbol{h}\|_2 = 1}_{\text{nonconvex}}$$

- Add a spherical constraint.
- Relax to a convex smooth surrogate: $\psi_{\mu}(z) = \mu \log \cosh(z/\mu)$, where μ controls the smoothness of the surrogate.

¹Ju Sun, Qing Qu, and John Wright. "Complete Dictionary Recovery Over the Sphere I: Overview and the Geometric Picture". In: *IEEE Transactions on Information Theory* 63.2 (2017), pp. 853–884.

²Yanjun Li and Yoram Bresler. "Multichannel sparse blind deconvolution on the sphere". In: *IEEE Transactions* on Information Theory 65.11 (2019), pp. 7415–7436.

Optimization Geometry

Nonconvex

Unique global minimizer

Nonconvex

Unique global minimizer

saddle points and spurious local minimizers

Is our objective landscape geometry of MSBD bad ?

2

0

Benign geometry in the orthogonal case

$$\min_{\boldsymbol{h} \in \mathbb{R}^n} f_o(\boldsymbol{h}) = \frac{1}{p} \sum_{i=1}^p \psi_\mu(\mathcal{C}(\boldsymbol{y}_i)\boldsymbol{h}) \quad \text{s.t} \quad \|\boldsymbol{h}\|_2 = 1$$

Benign geometry in the orthogonal case

$$\min_{\boldsymbol{h}\in\mathbb{R}^n} f_o(\boldsymbol{h}) = \frac{1}{p} \sum_{i=1}^p \psi_\mu(\mathcal{C}(\boldsymbol{y}_i)\boldsymbol{h}) \quad \text{s.t} \quad \|\boldsymbol{h}\|_2 = 1$$

• The landscape of the loss value $f_o(h)$ with respect to h:

Benign geometry in the orthogonal case

• The landscape of the loss value $f_o(h)$ with respect to h:

•
$$\mathcal{C}(\boldsymbol{g}) = \boldsymbol{I}.$$

• 2n = 6 ground truth $\{\pm e_i\}_{i=1}^3$

• Benign geometry: 2n local minimizers are approximately all shift and signed variants of the ground truth $(\{\pm e_i\}_{i=1}^3)$, and symmetrically distributed over the sphere.

Manifold gradient descent (MGD)

• Manifold gradient descent:

$$\boldsymbol{h}_{t+1} := \frac{\boldsymbol{h}_t - \eta_t \partial f_o(\boldsymbol{h}_t)}{\|\boldsymbol{h}_t - \eta_t \partial f_o(\boldsymbol{h}_t)\|_2},$$

where η_t is the stepsize, $\partial f_o(\mathbf{h}) = (\mathbf{I} - \mathbf{h}\mathbf{h}^\top)\nabla f_o(\mathbf{h})$, and $\nabla f_o(\mathbf{h})$ is the Euclidean gradient of $f_o(\mathbf{h})$.

Manifold gradient descent (MGD)

• Manifold gradient descent:

$$oldsymbol{h}_{t+1} := rac{oldsymbol{h}_t - \eta_t \partial f_o(oldsymbol{h}_t)}{\|oldsymbol{h}_t - \eta_t \partial f_o(oldsymbol{h}_t)\|_2},$$

where η_t is the stepsize, $\partial f_o(h) = (I - hh^{\top})\nabla f_o(h)$, and $\nabla f_o(h)$ is the Euclidean gradient of $f_o(h)$.

• With random initialization, n = 128, p = 16.

Can we establish theoretical guarantee for the simple and efficient MGD based on nonconvex optimization formulation?

Can we establish theoretical guarantee for the simple and efficient MGD based on nonconvex optimization formulation?

Yes. The statistical model will help !

Main Theoretical Results

Assumptions

- Inputs are sparse: the inputs $X = [x_1, x_2, \cdots, x_p]$ is under Bernoulli-Gaussian³ model BG(θ).
 - Each entry x in X is an i.i.d variable satisfing $x = \Omega \cdot z$, where Ω is a Bernoulli variable with parameter θ and $z \sim \mathcal{N}(0, 1)$.

 3 Qing Qu et al. "Analysis of the Optimization Landscapes for Overcomplete Representation Learning". In: arXiv preprint arXiv:1912.02427 (2019).

⁴Yanjun Li, Kiryung Lee, and Yoram Bresler. "A unified framework for identifiability analysis in bilinear inverse problems with applications to subspace and sparsity models". In: *arXiv preprint arXiv:1501.06120* (2015).

Assumptions

- Inputs are sparse: the inputs $X = [x_1, x_2, \cdots, x_p]$ is under Bernoulli-Gaussian³ model BG(θ).
 - Each entry x in X is an i.i.d variable satisfing $x = \Omega \cdot z$, where Ω is a Bernoulli variable with parameter θ and $z \sim \mathcal{N}(0, 1)$.
- C(g) is invertible⁴: ensure the identifiability of the filter g.
 - The condition number of $\mathcal{C}(\boldsymbol{g})$ is κ , i.e.

$$\kappa = \sigma_1(\mathcal{C}(\boldsymbol{g})) / \sigma_n(\mathcal{C}(\boldsymbol{g}))$$

 3 Qing Qu et al. "Analysis of the Optimization Landscapes for Overcomplete Representation Learning". In: arXiv preprint arXiv:1912.02427 (2019).

⁴Yanjun Li, Kiryung Lee, and Yoram Bresler. "A unified framework for identifiability analysis in bilinear inverse problems with applications to subspace and sparsity models". In: *arXiv preprint arXiv:1501.06120* (2015).

Main results

• Distance metric to measure the success recovery:

$$\operatorname{dist}(\boldsymbol{h}, \boldsymbol{g}_{\operatorname{inv}}) = \min_{j \in [n]} \|\boldsymbol{g}_{\operatorname{inv}} \pm \mathcal{S}_j(\boldsymbol{h})\|_2.$$

Main results

• Distance metric to measure the success recovery:

$$\operatorname{dist}(\boldsymbol{h}, \boldsymbol{g}_{\operatorname{inv}}) = \min_{j \in [n]} \|\boldsymbol{g}_{\operatorname{inv}} \pm \mathcal{S}_j(\boldsymbol{h})\|_2.$$

Theorem (Shi and Chi, 2019)

Instate the assumptions above, for $\theta \in (0, \frac{1}{3})$, when μ is small enough, with $O(\log n)$ random initializations, the output \hat{h} of MGD with a proper step size will satisfy:

$$\operatorname{dist}(\hat{\boldsymbol{h}}, \boldsymbol{g}_{\operatorname{inv}}) \lesssim \frac{\kappa^4}{\theta^2} \sqrt{\frac{n}{p}}$$

in polynomial iterations, provided $p \gtrsim \frac{\kappa^8 n^{4.5} \log^4 p \log^2 n}{\theta^4}$

Prior work

Table: Comparison with existing methods for solving MSBD

Methods	[Wang and Chi, 2016]	[Li and Bresler, 2019]	Ours
Assumptions	filter $oldsymbol{g}$ spiky $\&~\mathcal{C}(oldsymbol{g})$ invertible,	$\mathcal{C}(oldsymbol{g})$ invertible,	$\mathcal{C}(oldsymbol{g})$ invertible,
	$oldsymbol{X} \sim \mathrm{BG}(heta)$	$\boldsymbol{X} \sim \mathrm{BR}(\boldsymbol{\theta})$	$\boldsymbol{X} \sim \mathrm{BG}(\boldsymbol{\theta})$
Formulation	Convex	Nonconvex	Nonconvex
	$\min_{\boldsymbol{e}_1^{ op}\boldsymbol{h}=1} \ \mathcal{C}(\boldsymbol{h})\boldsymbol{Y}\ _1$	$\max_{\ \boldsymbol{h}\ _2=1} \ \mathcal{C}(\boldsymbol{h})\boldsymbol{R}\boldsymbol{h}\ _4^4$	$\min_{\ \boldsymbol{h}\ _{2}=1}\psi_{\mu}(\mathcal{C}(\boldsymbol{h})\boldsymbol{R}\boldsymbol{h})$
Algorithm	linear programming	noisy MGD	<i>vanilla</i> MGD
Deserver	$ heta \in O(1/\sqrt{n})$,	$\theta \in O(1)\text{,}$	$ heta\in O(1)$,
Condition	$p \geq O(n)$	$p \geq O(n^9)$	$p \geq O(n^{4.5})$

 For order of p, assuming θ, κ are constants, the order of sample complexity p is shown up to logarithmic factors.

Practical Experiment Results

Numerical experiments: synthetic data

- Success rate of recovering the filter g:
 - 10 Monte Carlo for success rate ∈ [0, 1].
 - Fix sparsity $\theta = 0.3$.

Figure: Requirement of sample complexity p with respect to n.

Numerical experiments: synthetic data

- Success rate of recovering the filter g:
 - 10 Monte Carlo for success rate $\in [0, 1]$.

Figure: Requirement of sample complexity p with respect to θ .

Numerical experiments: blind image deconvolution

- Experimental setting:
 - The filter size is $n = 128 \times 128$.
 - The number of observations is p = 1000.
 - Sparsity level $\theta = 0.1$: $X \in BG(\theta)$

(a) Observation (RGB) (b) Observation (R) $\,$ (c) Sparse input $\,$

Numerical experiments: blind image deconvolution

Comparisons of the recovered filter g:

(d) True image

(f) Recovery via [Li, et al., 2019]

Conclusion

• We propose a novel nonconvex approach for MSBD problem based on MGD with random initializations.

Conclusion

- We propose a novel nonconvex approach for MSBD problem based on MGD with random initializations.
- Under mild statistical model for sparse inputs, we provide theoretical characterizations for benign geometric landscape of the loss function → ensures the global convergence of MGD.

Conclusion

- We propose a novel nonconvex approach for MSBD problem based on MGD with random initializations.
- Under mild statistical model for sparse inputs, we provide theoretical characterizations for benign geometric landscape of the loss function → ensures the global convergence of MGD.
- Comparisons with prior work:
 - 1. significant improvement of sample complexity p: from $p \gtrsim O(n^9) \rightarrow p \gtrsim O(n^{4.5}).$
 - 2. better practical performance in a much larger range of the sparsity level.

References

- Yanjun Li and Yoram Bresler. "Multichannel sparse blind deconvolution on the sphere". In: *IEEE Transactions on Information Theory* 65.11 (2019), pp. 7415–7436.
- Yanjun Li, Kiryung Lee, and Yoram Bresler. "A unified framework for identifiability analysis in bilinear inverse problems with applications to subspace and sparsity models". In: arXiv preprint arXiv:1501.06120 (2015).
- Qing Qu et al. "Analysis of the Optimization Landscapes for Overcomplete Representation Learning". In: *arXiv preprint arXiv:1912.02427* (2019).
- Ju Sun, Qing Qu, and John Wright. "Complete Dictionary Recovery Over the Sphere I: Overview and the Geometric Picture". In: *IEEE Transactions on Information Theory* 63.2 (2017), pp. 853–884.

Thank you!

Email: {laixishi, yuejiechi}@cmu.edu Paper link: https://arxiv.org/pdf/1911.11167.pdf