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Image superresolution/deblurring
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How to find the high-resolution original image and the blurring
kernels simultaneously?
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Formulation
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Multi-channel sparse blind deconvolution (MSBD)

Problem Formulation: the i-th observed signal yi ∈ Rn can be
expressed as:

yi = g ~ xi = C(g)xi, i = 1, . . . , p,

• g is a filter, and xi ∈ Rn is a sparse input signal.

• p is the total number of observations, and ~ denote the
circulant convolution.

• g = [g1, g2, · · · , gn]> and circulant matrix C(g) ∈ Rn×n:

C(g) =


g1 gn · · · g2
g2 g1 · · · g3
...

...
. . .

...
gn gn−1 · · · g1

.
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Multi-channel sparse blind deconvolution (MSBD)

• Y = [y1, . . . ,yp] ∈ Rn×p, X = [x1, . . . ,xp] ∈ Rn×p :

Y = C(g)X.

Y ( )g X



n p n n n p

• Goal: recover both the unknown signals {xi}pi=1 and the
kernel g from multiple observations {yi}pi=1
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Ambiguities

• The bilinear form of the observations:

yi = (β · Sj(g)) ~
S−j(xi)

β
,

where Sj(z) is the j-th circulant shift of the vector z, β 6= 0
is an arbitrary scalar.

• Challenge: Scaling and shift ambiguities → g and {xi}pi=1

are not uniquely identifiable.

• Goal: recover filter g and sparse inputs {xi}pi=1, up to scaling
and shift ambiguity.
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Bilinear to linear

• C(g) is invertible → a unique inverse filter ginv:

C(ginv)C(g) = C(g)C(ginv) = I.

• Bilinear to linear: multiply C(ginv) on both side,

yi = C(g)xi →
C(ginv)yi = C(ginv)C(g)xi = xi︸︷︷︸

sparse

i = 1, . . . , p.
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A natural formulation

• Exploiting the sparsity of {xi}pi=1: seek h that minimize
the cardinality of C(h)yi = C(yi)h:

min
h∈Rn

1

p

p∑
i=1

‖C(yi)h‖0.

• ‖ · ‖0 is the pseudo-`0 norm: counts the cardinality of the
nonzero entries of the input vector.

• Problematic for two reasons:

1. has a trivial solution h = 0.

2. the cardinality minimization is computationally intractable.

How to recover ginv provably and efficiently ?
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Our nonconvex formulation
• We propose a nonconvex optimization formulation (following

[Sun, et al, 2017]1 ,[Li and Bresler, 2019]2) :

min
h∈Rn

fo(h) =
1

p

p∑
i=1

ψµ(C(yi)h)︸ ︷︷ ︸
convex surrogate

s.t ‖h‖2 = 1︸ ︷︷ ︸
nonconvex

• Add a spherical constraint.

• Relax to a convex smooth surrogate: ψµ(z) = µ log cosh(z/µ),
where µ controls the smoothness of the surrogate.
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1Ju Sun, Qing Qu, and John Wright. “Complete Dictionary Recovery Over the Sphere I: Overview and the
Geometric Picture”. In: IEEE Transactions on Information Theory 63.2 (2017), pp. 853–884.

2Yanjun Li and Yoram Bresler. “Multichannel sparse blind deconvolution on the sphere”. In: IEEE Transactions
on Information Theory 65.11 (2019), pp. 7415–7436.
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Optimization Geometry
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Convex vs nonconvex: optimization geometry

Convex Nonconvex
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Convex vs nonconvex: optimization geometry

Unique global minimizer

Convex Nonconvex
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Convex vs nonconvex: optimization geometry

Unique global minimizer saddle points and spurious local minimizers

Convex Nonconvex

Is our objective landscape geometry of MSBD bad ?
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Convex vs nonconvex: optimization geometry

Unique global minimizer saddle points and spurious local minimizers

Convex Nonconvex

Is our objective landscape geometry of MSBD bad ?
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Benign geometry in the orthogonal case

min
h∈Rn

fo(h) =
1

p

p∑
i=1

ψµ(C(yi)h) s.t ‖h‖2 = 1

• The landscape of the loss value fo(h) with respect to h:
• C(g) = I.
• n = 3, p = 30.
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Benign geometry in the orthogonal case

• The landscape of the loss value fo(h) with respect to h:
• C(g) = I.
• 2n = 6 ground truth {±ei}3i=1

• Benign geometry: 2n local minimizers are approximately all
shift and signed variants of the ground truth ({±ei}3i=1), and
symmetrically distributed over the sphere.
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Manifold gradient descent (MGD)
• Manifold gradient descent:

ht+1 :=
ht − ηt∂fo(ht)
‖ht − ηt∂fo(ht)‖2

,

where ηt is the stepsize, ∂fo(h) = (I − hh>)∇fo(h), and
∇fo(h) is the Euclidean gradient of fo(h).

• With random initialization, n = 128, p = 16.
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Theoretical guarantee

Can we establish theoretical guarantee for the simple and efficient
MGD based on nonconvex optimization formulation?

Yes. The statistical model will help !
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Main Theoretical Results
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Assumptions

• Inputs are sparse: the inputs X = [x1,x2, · · · ,xp] is under
Bernoulli-Gaussian3 model BG(θ).

• Each entry x in X is an i.i.d variable satisfing x = Ω · z, where
Ω is a Bernoulli variable with parameter θ and z ∼ N (0, 1).

• C(g) is invertible4: ensure the identifiability of the filter g.

• The condition number of C(g) is κ, i.e.

κ = σ1(C(g))/σn(C(g))

.

3Qing Qu et al. “Analysis of the Optimization Landscapes for Overcomplete Representation Learning”. In:
arXiv preprint arXiv:1912.02427 (2019).

4Yanjun Li, Kiryung Lee, and Yoram Bresler. “A unified framework for identifiability analysis in bilinear inverse
problems with applications to subspace and sparsity models”. In: arXiv preprint arXiv:1501.06120 (2015).
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Main results

• Distance metric to measure the success recovery:

dist(h, ginv) = min
j∈[n]
‖ginv ± Sj(h)‖2.

Theorem (Shi and Chi, 2019)

Instate the assumptions above, for θ ∈ (0, 13), when µ is small

enough, with O(log n) random initializations, the output ĥ of
MGD with a proper step size will satisfy:

dist(ĥ, ginv) .
κ4

θ2

√
n

p

in polynomial iterations, provided p & κ8n4.5 log4 p log2 n
θ4
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Prior work

Table: Comparison with existing methods for solving MSBD

Methods [Wang and Chi, 2016] [Li and Bresler, 2019] Ours

Assumptions
filter g spiky & C(g) invertible, C(g) invertible, C(g) invertible,

X ∼ BG(θ) X ∼ BR(θ) X ∼ BG(θ)

Formulation
Convex Nonconvex Nonconvex

mine>1 h=1 ‖C(h)Y ‖1 max‖h‖2=1 ‖C(h)Rh‖44 min‖h‖2=1 ψµ(C(h)Rh)

Algorithm linear programming noisy MGD vanilla MGD

Recovery
θ ∈ O(1/

√
n), θ ∈ O(1), θ ∈ O(1),

Condition p ≥ O(n) p ≥ O(n9) p ≥ O(n4.5)

• For order of p, assuming θ, κ are constants, the order of
sample complexity p is shown up to logarithmic factors.
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Practical Experiment Results
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Numerical experiments: synthetic data

• Success rate of recovering the filter g:
• 10 Monte Carlo for success rate ∈ [0, 1].
• Fix sparsity θ = 0.3.
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(a) Ours (b) [Li and Bresler, 2019]

Figure: Requirement of sample complexity p with respect to n.
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Numerical experiments: synthetic data

• Success rate of recovering the filter g:
• 10 Monte Carlo for success rate ∈ [0, 1].
• Fix n = 64.
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Figure: Requirement of sample complexity p with respect to θ.
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Numerical experiments: blind image deconvolution

• Experimental setting:
• The filter size is n = 128× 128.
• The number of observations is p = 1000.
• Sparsity level θ = 0.1: X ∈ BG(θ)

(a) Observation (RGB) (b) Observation (R) (c) Sparse input
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Numerical experiments: blind image deconvolution

Comparisons of the recovered filter g:

(d) True image (e) Recovery via (f) Recovery via
ours [Li, et al., 2019]
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Conclusion

• We propose a novel nonconvex approach for MSBD problem
based on MGD with random initializations.

• Under mild statistical model for sparse inputs, we provide
theoretical characterizations for benign geometric landscape of
the loss function → ensures the global convergence of MGD.

• Comparisons with prior work:

1. significant improvement of sample complexity p: from
p & O(n9)→ p & O(n4.5).

2. better practical performance in a much larger range of the
sparsity level.
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