Self-supervised Learning for ECG-based **Emotion Recognition**

Pritam Sarkar, Ali Etemad

Department of Electrical and Computer Engineering Queen's University, Kingston, Canada

ICASSP 2020

Ambient Intelligence and Interactive Machines (Aiim) Lab

Outline

- Problem and Motivation
- Related work
- Proposed Framework
- Datasets
- Results
- □ Analysis
- □ Summary

Problem and Motivation

Limitations of fully-supervised learning:

- Models are trained using automatically generated Human annotated labels are required to learn data labels. representations; the learned representations are often very task specific.
- Larger labelled data are required in order to train deep networks; smaller datasets often result in poor performance.

Advantages of self-supervised learning:

- Learned representations are high-level and generalized; therefore less sensitive to inter or intra instance variations (local transformations).
- Larger datasets can be acquired to train deeper and sophisticated networks.

Problem and Motivation

Limitations of fully-supervised learning:

- Human annotated labels are required to learn data Models are trained using automatically generated representations; the learned representations are labels. often very task specific.
- □ Larger labelled data are required in order to train deep networks; smaller datasets often result in poor performance.

Advantages of self-supervised learning:

- Learned representations are high-level and generalized; therefore less sensitive to inter or intra instance variations (local transformations).
- Larger datasets can be acquired to train deeper and sophisticated networks.

Literature Review

- □ *Healey et al., 2005*:
 - Stress detection during driving task
 - Time-frequency domain features
 - LDA classifier
- □ *Liu et al., 2009*:
 - > Affect based gaming experience
 - > Time-frequency domain features
 - > RF, KNN, BN, SVM classifiers
- □ Santamaria et al., 2018:
 - > Movie clips were used to elicit emotional state
 - Time/frequency domain features
 - Deep CNN classifier
- □ Siddharth et al., 2019:
 - > Affect recognition
 - > HRV and spectrogram features
 - > Extreme learning machine classifier

Proposed Framework

posed framework.

Transformations

- □ Noise Addition [SNR]
- □ Scaling [scaling factor]
- □ Negation
- **Temporal Inversion**
- Permutation [no. of segments]
- □ Time-warping [no. of segments, stretching factor]

A sample of an original ECG signal with the six transformed signals along with automatically generated labels are presented.

7

Proposed Architecture

The proposed self-supervised architecture is presented.

Table 1. The architecture of the signal transformation recognition network is presented.

Module	Layer Details	Feature Shape
Input	_	2560×1
	$[conv, 1 \times 32, 32] \times 2$	2560×32
Shared Layers	$[maxpool, 1 \times 8, stride = 2]$	1277×32
	$[conv, 1 \times 16, 64] \times 2$	1277×64
	$[maxpool, 1 \times 8, stride = 2]$	635×64
	$[conv, 1 \times 8, 128] \times 2$	635×128
	global max pooling	1×128
Task-Specific	$[dense] \times 2$	128
Layers	\times 7 parallel tasks	120
Output		2

We use 2 public datasets: AMIGOS and SWELL

\Box AMIGOS:

- > Affect attributes: Arousal, Valence
- > Total Participants: 40
- > Movie clips were shown to participants.
- > Shimmer sensors were used to capture ECG signal at 256 Hz.

□ SWELL:

- > Affect attributes: Arousal, Valence, Stress
- Total Participants: 25
- Participants performed office tasks.
- > TMSI devices were used to capture ECG signal at 2048 Hz.

Results

Table 2. The results of our self-supervised method on the SWELL dataset are presented and compared to prior work as well as the emotion recognition network without the selfsupervised step.

Ref.	Method	Stress	Arousal		Valence	
	withiou		Acc.	F1	Acc.	F1
[24]	SVM	0.641				
[23]	SVM	0.864				
[22]	BBN	0.926				
Our	CNN w/o self-sup.	0.984	0.958	0.957	0.961	0.956
	CNN with self-sup.	0.983	0.960	0.956	0.963	0.958

Table 3. The results of our self-supervised method on the AMIGOS dataset are presented and compared to prior work as well as the emotion recognition network without the selfsupervised step.

Ref.	Mathod	Arousa	1	Valence	
	withiou	Acc.	F1	Acc.	F1
[11]	GNB		0.545		0.551
[21]	CNN	0.81	0.76	0.71	0.68
Ours	CNN w/o self-sup.	0.837	0.828	0.809	0.808
	CNN with self-sup.	0.858	0.851	0.840	0.837

Analysis

Performance of our method with and without the self-supervised learning step using 1% of the labels in the datasets are presented.

AMIGOS

Summary

- the first time.
- □ We achieved state-of-the-art results on 2 public datasets (AMIGOS and SWELL).
- considerably better compared to the fully-supervised model.

□ We proposed a novel ECG-based self-supervised learning framework for affective computing for

□ We showed that for a very limited amount of labelled data our self-supervised model perform

If you have any questions please reach me at: pritam.sarkar@queensu.ca www.pritamsarkar.com

Thank you!

