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Problem and Motivation

Limitations of fully-supervised learning:

❑ Human annotated labels are required to learn data 

representations; the learned representations are 

often very task specific. 

❑ Larger labelled data are required in order to train 

deep networks; smaller datasets often result in 

poor performance.

Advantages of self-supervised learning:

❑ Models are trained using automatically generated 

labels.

❑ Learned representations are high-level and 

generalized; therefore less sensitive to inter or intra 

instance variations (local transformations).

❑ Larger datasets can be acquired to train deeper and 

sophisticated networks.
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Literature Review

❑ Healey et al., 2005: 
➢ Stress detection during driving task

➢ Time-frequency domain features

➢ LDA classifier

❑ Liu et al., 2009: 
➢ Affect based gaming experience

➢ Time-frequency domain features

➢ RF, KNN, BN, SVM classifiers

❑ Santamaria et al., 2018:

➢ Movie clips were used to elicit emotional state

➢ Time/frequency domain features

➢ Deep CNN classifier

❑ Siddharth et al., 2019:
➢ Affect recognition

➢ HRV and spectrogram features

➢ Extreme learning machine classifier
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Proposed Framework

Stage 1: Pretext Task

Stage 2: Downstream Task

Transformation Multi-task Self-supervised Network

Emotion Recognition

Pseudo 

Labels

Learned ECG Representation
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ECG
Transformed 

ECG

ECG

Our proposed framework.
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❑ Noise Addition [SNR]

❑ Scaling [scaling factor]

❑ Negation

❑ Temporal Inversion

❑ Permutation [no. of segments]

❑ Time-warping [no. of segments, 
stretching factor]

Transformations

A sample of an original ECG signal with the six transformed 

signals along with automatically generated labels are presented.
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Proposed Architecture

     
      

  
  

  
  
  
  
  
   

  
 
  
  

  
  
 
  
  

  
  
 
  
  

       
       

  
  

  
  
  
  
  
 

  
  
  
  
 

           
    

        
    

      

      

      

           

                        

                 

                            

                                          

The proposed self-supervised architecture is 

presented.
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Datasets

We use 2 public datasets: AMIGOS and SWELL

❑ AMIGOS:

➢ Affect attributes: Arousal, Valence

➢ Total Participants: 40

➢ Movie clips were shown to participants.

➢ Shimmer sensors were used to capture ECG signal at 256 Hz. 

❑ SWELL:

➢ Affect attributes: Arousal, Valence, Stress

➢ Total Participants: 25

➢ Participants performed office tasks.

➢ TMSI devices were used to capture ECG signal at 2048 Hz.
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Results
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Analysis

Performance of our method with and without the self-supervised learning step using 

1% of the labels in the datasets are presented.
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Summary 

❑ We proposed a novel ECG-based self-supervised learning framework for affective computing for 
the first time.

❑ We achieved state-of-the-art results on 2 public datasets (AMIGOS and SWELL).

❑ We showed that for a very limited amount of labelled data our self-supervised model perform 
considerably better compared to the fully-supervised model.
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Thank you!

If you have any questions please reach me at:

pritam.sarkar@queensu.ca

www.pritamsarkar.com

mailto:pritam.Sarkar@queensu.ca
http://www.pritamsarkar.com/

