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Introduction

SATCOM Superiority
1 Inherent large coverage
2 High-speed broadband access
3 Services in areas where terrestrial communication systems are

infeasible

The goal of next generation communication system:
1 Seamless Connectivity
2 Increasing demand for broadband satellite services

Problems:
1 Scarce spectrum resources
2 Increasing data rate demands
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Introduction

The deployment of high frequency band: Ka or
mmWave

1 Huge available bandwidth.
2 Antenna arrays with directional beam compensating

propagation losses.

Promising Infrastructure: Satellite-Terrestrial Integrated
Networks (STIN)

1 An supplement for drawbacks experienced by
terrestrial/satellite systems.

2 Use dynamic spectrum access technology to enhance the
utilization of limited spectrum significantly.

3 Design an integrated network to satisfy the demand for
anytime, anywhere, and anyway service.
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Introduction

Energy Efficiency and Security Requirements
1 Huge energy consumption of base stations and especially the

radio access subsystems
2 Important factor from both economic and ecological

perspectives
3 Security requirement brings new challenage
4 By defining the ratio between the secrecy rate and the

consumed power, the concept of secrecy energy efficiency
(SEE) is introduced to balance the security and EE
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Introduction

Our contributions:

We formulate a constrained optimization problem to maximize
the SEE of the considered system while satisfying the SINR
requirements of both the earth station and cellular user.
Robustness is incorporated in the design by considering
imperfect knowledge of the angles of departure for the
downlink wiretap channels.
We then propose a new iterative search algorithm based on
the Charnes-Cooper approach to solve the optimization
problem and obtain the desired hybrid BF weight vectors.
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System Model

System Model of the considered STIN:

The GEO satellite serves an earth station (ES) in the presence
of K eavesdroppers (Eves), while the BS serves a cellular user
(CU). It is assumed that the Eves, but not the ES, are under
coverage of the cellular sub-network, and therefore receive
interference from the BS.

SAT

Terrestrial Core 
Network

ES
BS

Gateway

CU

K Eves

Signal link

Wiretap link
Control link

Green Interference link
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System Model
Channel Model

Satellite downlink channel
Considering the effects of path loss, atmospheric attenuation and
satellite antenna gain in satellite downlink channel, it can be
written as

f =
√
CLGrr� b 1

2 (1)

Terrestrial downlink channel
A typical mmWave channel with a predominant LoS propagation
component and a sparse set of single-bounce NLoS components
can be described as

h =
√
g (θ0, ϕ0)ρ0ah (θ0, ϕ0)⊗ av (θ0)

+
√

1
J

J∑
j=1

√
g (θj , ϕj)ρjah (θj , ϕj)⊗ av (θj).

(2)
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System Model
Channel Model

Steering vector
ah (θ, ϕ) and av (θ) denote the horizontal and vertical array
steering vectors (SVs) of the UPA, which are, respectively, given by

ah (θ, ϕ) =
[
e−iβ((N1−1)/2)d1 sin θ cosϕ, · · ·

, e+iβ((N1−1)/2)d1 sin θ cosϕ
]T
,

(3a)

av (θ)=
[
e−iβ((N2−1)/2)d2 cos θ, · · · , e+iβ((N2−1)/2)d2 cos θ

]T
. (3b)
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System Model
Signal Models

The received signals at the CU, ES, and k-th Eve are,
respectively, expressed as

yc (t) = hHc Pvx (t) + fHc ws (t) + nc (t) ,
ys (t) = fHs ws (t) + ns (t) ,
yk (t) = fHk ws (t) + hHk Pvx (t) + nk (t)

(4)

Then, the SINR at the CU, ES, and k-th Eve are given by

γc =

∣∣hH
c Pv

∣∣2
|f H

c w|2 + σ2
c

, γs =

∣∣f H
s w
∣∣2

σ2
s

, γk =

∣∣f H
k w
∣∣2

|hH
k Pv|2 + σ2

k

. (5)
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System Model

The achievable secrecy rate of the ES is given by

Rs =
[
log2 (1 + γs)− max

k∈{1,··· ,K}
log2 (1 + γk)

]+

(6)

The total power consumption of the considered system is
modeled as

Ptot = η1‖w‖2 + η2‖v‖2 + PS + PB (7)
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System Model
Problem formulation

By assuming that the available cellular wiretap channel of the
k-th Eves belongs to a given AoD uncertainty set ∆k defined
by θk ∈

[
θLk , θ

U
k

]
and ϕk ∈

[
ϕLk , ϕ

U
k

]
, the optimization

problem can be formulated as

max
w,v,P

min
∆k

Rs/Ptot (8a)

s.t. γc ≥ Γc, (8b)
γs ≥ Γs, (8c)∣∣∣[P]i,j

∣∣∣2 = 1/Nb, i = 1, · · · , Nb, j = 1, · · · , Nr, (8d)

‖v‖2F ≤ Pb, ‖w‖
2
F ≤ Ps (8e)
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Robust BF Scheme

By assuming that the elevation and azimuth AoD angles for
the wiretap channel of the k-th Eve can only take uniformly
spaced values within their respective range θk ∈

[
θLk , θ

U
k

]
and

ϕk ∈
[
ϕLk , ϕ

U
k

]
, as given by

θ
(i)
k = θLk + i∆θ, i = 0, · · · ,M1,

ϕ
(j)
k = ϕLk + j∆ϕ, j = 0, · · · ,M2

(9)

where ∆θ = (θUk − θLk )/M1 and ∆ϕ = (ϕUk − ϕLk )/M2.
Then, we define H̃ =

∑M1
i=0

∑M2
j=0 µi,jH(i,j) and

F̃ =
∑M1
i=0

∑M2
j=0 µi,jF(i,j), where H(i,j) = h(i,j)

(
h(i,j)

)H
,

F(i,j) = f (i,j)
(
f (i,j)

)H
, µi,j = 1

(M1+1)(M2+1) . By using these
averaged channel matrices in problem (8) instead of the
imperfect ones, the minimization over ∆k can be removed.
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Robust BF Scheme

By invoking the Charnes-Cooper approach and introducing
auxiliary variables α and τ , (8) can be further transformed as

max
W,V,P

τ−1log2

(
σ2 + Tr (FsW)

α

)
(10a)

s.t. η1Tr (W) + η2Tr (V) + PS + PB = τ, (10b)
Tr
(
F̃kW

)
Tr
(
PHH̃kPV

)
+ σ2

≤ α, ∀k, (10c)

Tr
(
PHHcPV

)
− Γc

(
Tr (FcW) + σ2) ≥ 0, (10d)

Tr (FsW)− Γsσ
2 ≥ 0, (10e)∣∣[P]i,j

∣∣2 = 1/Nb, i = 1, · · · , Nb, j = 1, · · · , Nr, (10f)

Tr (W) ≤ Ps,Tr (V) ≤ Pb, (10g)
rank (W) = 1, rank (V) = 1 (10h)

where ak = Tr(Hir,kWk,1)
σ2

ir,k
.
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Robust BF Scheme
Iteratively Solving W

The optimization problem for the digital beamforming weight
vector can be expressed as

max
W,V,τ,α

log2

(
σ2 + Tr (FsW)

α

)
τ−1 (11a)

s.t. η1Tr (W) + η2Tr (V) + PS + PB = τ, (11b)
Tr
(
F̃kW

)
Tr
(
P(n)HH̃kP(n)V

)
+ σ2

≤ α, ∀k, (11c)

Tr
(

P(n)HHcP(n)V
)
− Γc

(
Tr (FcW) + σ2) ≥ 0, (11d)

Tr (FsW)− Γsσ2 ≥ 0, (11e)
Tr (W) ≤ Ps,Tr (V) ≤ Pb, (11f)
rank (W) = 1, rank (V) = 1 (11g)
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Robust BF Scheme
Iteratively Solving P

The optimization problem of the analog precoder can then be
written as follows

max
P̂

t

s.t. Tr
(

V̂(n)HH̃kV̂(n)P̂
)

+ σ2 ≥ tTr
(
F̃kW(n)) , ∀k,

Tr
(

V̂(n)HH̃cV̂(n)P̂
)
≥ Γc

(
Tr
(
FcW(n))+ σ2) ,

diag
[
P̂
]
q

=
[
qqH

]
q
, q = 1, · · · , NbNr,

rank
(

P̂
)

= 1

(12)

where P̂ = ppH , q = vec (Φ), p=vec (P) ∈ CNbNr×1,
V̂(n) =block− diag(v(n)T , · · · ,v(n)T ) ∈ CNb×NbNr ,
Φ = 1Nb×Nr/Nb
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Simulations

3D beampattern of Pv:
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Simulations

SEE versus Pb:
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Simulations

SEE versus ∆:
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Conclusion

We have proposed a hybrid BF scheme to achieve SEE
maximization in STIN. To solve the original non-convex
problem, we first used a discretization method to transform
the constraints on the imperfect channel AoD into solvable
ones.
Then, an iterative BF algorithm based on the Charnes-Cooper
method was conceived to solve the problem and obtain the
digital and analog BF weight vectors.
Finally, numerical results were given to demonstrate the
superiority and effectiveness of the proposed hybrid BF
scheme in comparison with an existing method.
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Thank You!

Zhi Lin
zhi.lin4@mail.mcgill.ca
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