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Introduction

Many acoustic features has been explored for mon-

aural speech enhancement. )

_ . . N 000
©00 Significant process has been achieved by using the
ﬁww phonetic information via phonetic posteriorgram. } ﬁﬂﬁ

Cool!!! Inspired by the progress, we attempt to
Speech introduce the phonetic information into monaural Voice
Enhancement | ¢heech enhancement by developing a phoneme- =~ Conversation
aware network.

4 Advantages h

® Phonetic information provides more stationary cues than acoustic features.
® The solution space of an enhanced speech will be restricted given the
N phonetic posteriorgram as the condition. y
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Phonetic posteriorgram (PPG)
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Fig. 1. PPG representation of a mandarin sentence. The hor-
izontal axis represents time in seconds and the vertical axis
denotes the phonetic class. Lighter shade implies a higher
posterior probability.
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Basic Phoneme-Aware Network
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Context Aggregation with dilated convolutions
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Involving PPG prediction
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PAN-b+PR

Lpgr = KL(P||F’) ZZP(t c)log P(t,c) — P(t,c)log P(t, c)

t=1c=

Lpany = Lpgr + Lsg
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[terative prediction and training algorithm

Algorithm 1 The forward process of iterative training for
PAN.

Input:

2

b

The power spectrum of noisy speech,
The PPG extracted from the noisy speech, Q);

Output:

=M e P YR

(2.

9

The enhanced power spectrum,
The predicted PPG, }5;
P < Q;
8|2 = PAN(IX2, P) @ | X2
fori =19 < N;i++do

P = PR(|5%,Q);

S]? = PAN(X]?, P) © | X|?;
end for
return |S|?, P
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Correcting noisy PPG (CNP) vs. predicting
ground-truth PPG from scratch (PGP)

» In PAN-b+PR, the PPG predictor is trained to estimate the ground-
truth PPG from scratch, which can be more inaccurate than the noisy
PPG at the beginning of training. (PGP)

» We train the PPG predictor to learn how to correct the noisy PPG Q
in log-scale (CNP):

PlogP = PR(S,Q) + PlogQ

» Combining the loss function of PPG predictor Lpp and the above
equation, we get:

min Lpp = min (KL(PHQ) —z PR(S,Q) )
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Experimental settings

» Clean speech corpus
98,991 mandarin utterances from 100 males and 100 females
95 males and 95 females are randomly selected for training
10 speakers are used for test.

» 5 noises from NOISEX-92 are used for training
factoryl, Speech Shaped Noise, engine, optroom, babble

» 4 noises are used for test
buccaneerl, buccaneer2, factory2 from NOISEX-92
Cafeteria from DEMAND

» 4 SNR levels are trained and evaluated
-5,0,5,10dB
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Experimental settings

» Optimizer: Adam with the learning rate of 0.001

» Acoustic model for PPG extraction:

A deep feed-forward sequential memory network (DeepFSMN) trained
with a 5,000-hour mandarin speech dataset.

10 DeepFSMN blocks with 512 hidden units in each block

The DeepFSMN is trained to model 244 senones by minimizing the
cross-entropy (CE) loss.

» Evaluation settings:

Metrics: short-time objective intelligibility (STOI), perceptual evaluation
of speech quality (PESQ) and character error rate (CER) of robust ASR

The ASR system is trained with a 20,000-hour mandarin speech dataset
collected from 20 domains resulting in 5.71% CER on clean speech.
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Experimental results

» The effect of phonetic information

Table 1: Effect of phonetic information in terms of STOI and
PESQ on untrained noises and untrained speakers. The num-
bers represent the averages over the four test noises.

metrics STOI (%) PESQ
SNR (dB) -5 0 5 10 -5 0 ) 10
unprocessed | 64.39 | 75.38 | 85.29 | 92.15 | 1.01 | 1.32 | 1.71 | 2.10
CRN [5] 70.44 | 81.95 | 89.94 | 94.70 | 1.50 | 1.92 | 2.35 | 2.74
PAN-a (NP) | 71.26 | 82.55 |1 90.30 | 94.88 | 1.56 | 1.96 | 2.38 | 2.77
PAN-a (GP) | 78.51 | 85.69 | 91.64 | 95.56 | 1.84 | 2.18 | 2.55 | 2.93
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Experimental results

» Comparisons of different architectures and iterations

Table 2: Comparisons of different architectures and iterations
in terms of average STOI, PESQ and PPG accuracy on test set.

metrics STOI (in %) | PESQ | ACC (in %)
unprocessed 19.77 1.54 44.50
CRN [5] 84.26 2.13 -
PAN-a (N=0) 85.32 2.17 -
PAN-a+PR (PGP, N=1) 85.64 2.21 49.95
PAN-a+PR (PGP, N=2) 85.51 2.19 45.06
PAN-b (N=0) 85.86 2.20 -
PAN-b+PR (PGP, N=1) 86.00 2.25 58.15
PAN-b+PR (PGP, N=2) 85.94 221 54.01
PAN-b+PR (CNP, N=1) 86.13 2.28 60.23
PAN-b+PR (CNP, N=2) 85.30 2.18 56.60
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Experimental results

» Correcting noisy PPG (CNP) vs. predicting ground-truth
PPG from scratch (PGP)
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Fig. 2: The PPG_ACCs over training epochs for the CNP and
PGP based predictor on the training and valid set.
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Experimental results

» Independent front-end processing for ASR
Large-scale training with about 1,000 noises from MUSAN dataset

10 untrained noises are used for test
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Fig. 3: The CERs of different models on the large-scale set.
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Experimental results
» Independent front-end processing for ASR
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Fig. 4. The power spectrum of (a) noisy speech interfered by
the buccaneer2” noise at 5dB, (b) enhanced speech by CRN,
(c) enhanced speech by PAN-b+PR and (d) clean speech.
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Conclusions

» We proposed the PAN to utilize the phonetic information
for monaural speech enhancement.

» An 1terative algorithm 1s proposed to train the PAN and
PPG predictor.

» We find that correcting the noisy PPG is a better choice
than predicting the ground-truth PPG from scratch.

» Experimental results show that utilizing the phonetic

information can consistently improve the enhancement
performance in terms of STOI, PESQ and CER.
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