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Raw waveform generation: Autoregressive (AR) vs. non-AR

Autoregressive models 
J High-fidelity speech generation (e.g., WaveNet [1])
L Generation is too slow

Non-autoregressive models
Teacher-student-based methods (Parallel WaveNet [2], ClariNet [3])
J Real-time generation
L Complicated two-stage training using probability density distillation 
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Our approach: GANs for waveform generation

Parallel WaveGAN (Parallel inference + WaveNet + GAN) 

• Distillation-free: a distillation-free fast waveform generation, combining multi-
resolution STFT loss and adversarial loss.

• Fast: Training and inference speed become 4.82 / 1.96 times faster than the 
conventional parallel WaveNet (i.e. ClariNet).

• High-quality:  Our model achieves 4.16 MOS (in Transformer-based TTS) that is 
competitive to the best distillation-based ClariNet.

GAN-based methods can be good alternatives to distillation based methods.

STFT: Short-time Fourier transform
MOS: Mean-opinion score
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Parallel WaveGAN: WaveNet-based generator

Architecture
Generator architecture is almost the same as WaveNet [1]

Conditional waveform generation
80-dim mel-spectrogram as auxiliary features
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STFT loss: Spectral convergence (SC) [4]
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SC penalizes large amplitude components
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STFT loss: Log-scale STFT magnitude loss [4] 
log STFT '
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Log STFT loss penalizes small amplitude components

N: number of elements in the STFT magnitude
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Multi-resolution STFT loss
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FFT size / window size / shift
512 / 240 / 50 1024 / 600 / 120 2048 / 1200 / 240

Higher frequency resolutionHigher temporal resolution Balanced

M: number of STFT losses



Parallel WaveGAN: Training overview
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Experiments

Text 
processing

Transformer-
based model [5]
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[5] N.Li,et al, “Neural speech synthesis with Transformer network,” in Proc. AAAI, 2019.
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Experimental conditions

Data & features

Vocoder model comparison
– Single Gaussian WaveNet [1,3] 

– ClariNet (single / three STFT losses) [3]

– ClariNet-GAN (single / three STFT losses) [6]

– Parallel WaveGAN (single / three STFT losses)

Listening tests
Mean-option score (MOS) listening test on quality and naturalness

18 native Japanese speakers / 20 random utterances for each model

Recordings Size (training / validation / test)

24 kHz /16 bit, female professional Japanese speaker 11,449 (23 hours) / 250 / 250

Auxiliary features Frame shift Frame length Frequency range

80-dim log-melspectrogram 12.5 ms 50 ms 70 - 8000 Hz
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Analysis/synthesis: Effects of multi-resolution STFT loss

MOS listening test results on analysis/synthesis

Using multi-resolution STFT loss largely improved perceptual quality for both ClariNet and 
Parallel WaveGAN.
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Training/inference time and model size comparison

Model Training time 
(in days)

Inference speed
(k times faster 
than real-time)

Number of 
parameters
(in millions)

WaveNet 7.4 0.0032 3.81

ClariNet 12.7 14.62 2.78

Parallel WaveGAN (ours) 2.8 28.68 1.44
Lower is better Higher is better Lower is better

All training was conducted on a server with two NVIDIA Tesla V100 GPUs.
All inference test was conduced on a server with a single NVIDIA Tesla V100 GPU.
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Text-to-speech: Perceptual quality evaluation

MOS listening test results for TTS 

Our model achieved 4.16 MOS competitive to the best distillation-based ClariNet.
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Conclusion

Goal
Fast, high-quality and simple waveform generation for text-to-speech (TTS)

Proposed method
Parallel WaveGAN, a distillation-free fast waveform generation, combining
multi-resolution STFT loss and adversarial loss.

Results
Comparative perceptual quality (MOS 4.16 in Transformer-based TTS) to the 
best distillation-based method while improving inference and training speed.

Take-home message: GAN-based methods can be good alternatives to distillation 
based methods.
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