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Introduction

= Federated Learning

¢ Federated learning (FL), is developed recently, which features distributed learning
at edge devices and periodic local-update of model (model coefficients or
gradients) averaging at an parameter server (PS)

¢ Nevertheless, the updates uploading in FL can be still bandwidth-consuming as an
Al model usually comprises millions to billions of parameters [7]

¢ A key research issue that is particularly hot recently is to reduce the overhead in
update uploading to further accelerate the model training process [8]—[13]

e Addressing the straggler effect in synchronous update averaging

e Developing lazily updating algorithm that schedules only those devices with significant
updates to save the updating bandwidth

e Compress gradient vectors by exploiting its inherent sparsity (most of the gradient
elements are insignificant and thus can be truncated without harming the model
accuracy) Local Mod
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Introduction

= Federated distillation

¢ To alleviate this problem, federated distillation (FD) was introduced for

classification problems in [14]

¢ Distillation for learning model was proposed by Hinton et al. [15]
e To transfer a knowledge about a learning model, output vectors per inputs are sent

from teacher _
Per input
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¢ In FD, devices periodically exchange the average output logit vectors per labels
instead of local update of model in FL (less information but lower accuracy gain

than FL)

> We propose a novel hybrid federated distillation (HFD) scheme that aims at
bridging the performance gap between FD and FL
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Introduction

= Wireless Implementation of FD and HFD

¢ In many practical implementations, however, bandwidth of the communication
channel from devices to the PS turns out to be the main bottleneck [16], [17]

¢ Recently, a multiple access scheme called “over-the-air” computation (AirComp)
is particularly appealing in the scenario as it integrates transmission and
computation and allows “one-shot” data aggregation by exploiting the waveform-
superposition property of a multi-access channel (MAC) [18-19], [25]

There is no previous work about the wireless implementation of FD

We propose a communication scheme for the implementation of FD focusing on
the quantization and compression

¢ Both a conventional digital scheme and an analog scheme are considered for the
communication in the uplink and downlink

*

*
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Problem Definition

= Problem Definition

¢ K devices communicate via an Access Point (AP) so as to train a machine learning
model that outperforms a model trained solely on the local training set
¢ For device k&
e Dataset D : (c,t) (vector of covariates, one-hot encoding vector)
e Trains its own neural network model: Wi, W x1
e Neural network produces the logit vector : s (c|wy)

the probability vector : E(C|Wk)
7
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Training Protocols (FL)

Algorithm 2 Federated Learning (FL)

for each iteration 2 =1,...,1

for each device k =1,..., K

download from PS the average weight update

| K
k
Aw;_ 1 = e E Aw;y
k=1
set initial value

k k kA _k
w, =w; | +Aw,_1 — Aw;/ | =W,

%,0

for each iteration of local training
do SGD update as in (1), for a randomly

edge device 5
selected training example (c,t) € Dy,

end
upload update Aw} = w¥ — wF_ to PS

i —_—

¢ The weight vectors at each device are initialized to the average weight vectors
using the average weight update downloaded from the PS

¢ Devices carry out a number of local updates using SGD as the update in IL
¢ Upload the resulting weight vector to the PS

Korea Advanced Institute of Science and Technology
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Training Protocols (FD)

N

parameter server

e o i
/ I \ loéit vectors
B (
& M(E
edge device i

¢ Instead of neural network model parameters, devices exchange the local-
averaged logit vector per labels (10 values per 10 classes for MNIST)

¢ Applies the global-averaged logit vectors per labels for its own local training
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Training Protocols (FD)

Algorithm 3 Federated Distillation (FD)

for each iteration i =1,...,1

for cach device k=1,..., K

download from PS the global-averaged logit vectors for all labels £ =1,..., L

1K
A K
Si 1 = I% Z Sit (2)
k=1
obtain the local logit vectors
w  Ksig—sh,
ST TR 3)

initialize s, | , := 0 and nf,, , := 0 for all labels t = 1,..., L
for each iteration of local training
do SGD update

wh e wh—aV {(1- )6 (£ (clwh) ,t) + B0 (£ (clwh) ¢ | @

for a randomly selected training example (c, t) € Dy,
update the logit vector and the label counter

SEi ¢ Sk +s (clwh)

k k
Mg < g1+ 1

end
upload the local-averaged logit vectors Sf+1,t — si-‘+1,L/n{F+1‘L to the PS for all labels t =1,...,L

¢ In(2) and (3), each device excludes its own information from the averaged logit

vectors

¢ In (4), each device carries out a number of local updates using the averaged logit

vectors as a regularizer

¢ During the local updates, each device computes and uploads the local-averaged

logit vectors for all labels to the PS
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Training Protocols (HFD)

¢ The proposed HFD modifies FD by using not only the average logit vector but also

the average covariate vector per label, which is shared during a preliminary
offline phase

¢ In the distillation [15],
e Teacher and students share the same covariates vectors
e The teacher’s knowledge is transferred by sending every logit vectors for all covariates
e Student uses associated logit vectors for local training of covariates

¢ In FD, the teacher’s knowledge is the average logit vectors per labels
¢ In HFD,

e The teacher’s knowledge is average covariate vector and its output logit vectors per
labels

e Updates consist of distillation phase and IL phase

= Distillation phase : updates over only global averaged covariate vectors using the
downloaded logit vectors as regularizer as in FD

= |L phase : updates over local dataset

Korea Advanced Institute of Science and Technology 10 Advanced Radio Technology Laboratory
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Training Protocols (HFD)

Prior to the global iterations
- Obtain the local averaged
covariate vectors

cF t=1,...,L
- Download the global

averaged covariate
vectors exclude its own

information
K
~ ]. "'k‘f
k'=1

Algorithm 4 Hybrid Federated Distillation (HFD)

for each device k = 1,..., K
for each iteration 7 = 1,...,[
download from PS the global-averaged logit vectors (5) for all labels [ =1,..., L

obtain the logit vectors (6)
for each iteration of the distillation phase of local training
| do SGD update as in (7) for a data point (Etk,t) for a randomly chosen label {
end
for each iteration of the IL phase of local training
| do SGD update as in (3) for a randomly selected training example (c,t) € 1D
end
upload the logit vectors
K - ~k k
Sit1,t —S(Cr. ‘ W-i)

to the PS for all labels t = 1,...,L

¢ Asin FD, each device downloads the global averaged logit vectors (and exclude)

¢ At the distillation phase, does SGD updates with the covariate vectors using the
logit vectors as a regularizer for a randomly chosen label

¢ Atthe IL phase, each device does SGD updates with its own local dataset

¢ After the local updates, computes and uploads the output logit vectors of local
averaged covariate vectors per labels
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Wireless Cooperative Training

= Proposed four wireless implementations of FL and FD/HFD
¢ Digital (D) or analog (A) communication in uplink and downlink
¢ digital-digital (D-D) / digital-analog (D-A)
¢ analog-digital (A-D) / analog-analog (A-A)
= Digital transmission for both uplink and downlink is based on

separate source-channel coding
¢ UL: Equal resource allocation to devices, sparsification and quantization(FD/HFD)

¢ DL: Broadcast after compression and quantization

= Analog transmission implements joint source-channel coding

through over-the-air computing
¢ UL: Simultaneous transmission in uncoded manner
¢ DL: Broadcast = Consider scaling factor and AMP algorithm at each device
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Wireless Cooperative Training

= Channel Model

¢ During each information exchange phase of the i-th global iteration, devices
share a fading uplink multiple-access channel: The received signal is

K
yi = E hixE + z;
k=1

h¥ . quasi-static fading channel from the device & to the AP
x¥ : Ty x 1 signal transmitted by the device k
z; : Ty x 1 noise vector withi.i.d. CN (0,1) entries

Each device k has a power constraint E [||x}||3] /Ty < Py

¢ The AP can broadcast to all device in downlink so that the received signal is
Vi = 9;Xi +2;
o gf : quasi-static fading channel from the AP to the device £
e X;: Tp x 1 signaltransmitted by the AP
e zF¥: Tp x1 noise vector withi.i.d. CN (0,1) entries
e The AP has a power constraint E [||x;3] /Tp < Pp
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Wireless Cooperative Training

= Performance Comparison

¢ 10 devices train a 6- layer CNN to carry out image classification based on subsets
of the MINIST data set available at each device

¢ The distributions of datatset are i.i.d.

e Randomly select disjoint sets of 64 samples from the 60,000 training MNIST examples,
and allocate each set to a device

Channel fading: Rician fading

Number of global iteration: 10

Learning rate: 0.001

Number of quantization bits: 16

Sparsfication level for analog transmission: ¢ = 47'/5
Ty =Tp =T

Pp = Py +10 dB

® ¢ ¢ ¢ ¢ ¢ o
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Wireless Cooperative Training

= Performance Comparison

* Number of channel uses 0.8 — 1 ] ’ [ :
varies under Py = 0 dB
* FD and HFD significantly
outperform FL at low values 0.7y

of T that is, with limited > 0658
spectral resources g """""""""""""""""""""""""""""""""
* HFDis seen to uniformly a8 9o
improve over FD < 055
* The A-A scheme is clearly
0.5
preferable over the *-D-A
: ; ~4-A-D
alternatives 0.45¢
- A-A
0_4 1 1 1 | | 1 J
100 500 1500 2500 3500 4500 5500 6500

Number of channel uses, T

Fig. 2: Classification test accuracy for IL, FL, FD, and HFD under implementations
D-D, D-A, A-D, and A-A
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Wireless Cooperative Training

= Performance Comparison

* The number 7' is 2500 0.75 '

* The figure confirms that FD il = — ——
and HFD significantly 0.7% :
outperform FL at low values
of P ., 065

* And HFD uniformly improves ;':f
over FD. g 09

* The A-A scheme shows the ;
best performance, especially 053
for lower values of P

e Itis checked that the U=
performance of analog )
transmission scheme 4 10 5 0 5 10 20
converges when P increases SNR, P (dB)

(The figure should be plotted Fig. 2: gﬁfiﬁf’l _t[e)s’ta.?:-lc((i:u:i?r for IL, FL, FD, and HFD under implementations

for larger SNR)
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Conclusion

Development of FD/HFD to support FL under limited communication

resources
- Propose the HFD training protocol
- Investigate the wireless implementations of FD/HFD

Questions =2 wlsgus3396@kaist.ac.kr
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Appendix: Wireless Cooperative Training

= Uplink Digital Transmission (FL, FD/HFD)
¢ Consider for simplicity an equal resource allocation to devices
¢ The number of bits that can be transmitted from each device &
at the i-th global iteration is given using Shannon’s capacity

T 2
Bu ki = 2o logy (1+ [nF|” KPy)

¢ Each device & compresses the corresponding information to be sent to the AP to
no more than By .; bits

¢ Devices are aware of the rate and hence of the channel power
¢ AP has full channel state information
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Appendix: Wireless Cooperative Training

= Uplink Digital Transmission (FL)
¢ Each device k aims to send Aw! at the i-th global iteration
¢ Adopts spares binary compression with error accumulation as
vh = sparse (Awf + Af)
where the accumulated quantization error is updated as
AME = AwF + AF — @y (VF)

¢ Then it sends

bits to send the value @, (1) and the indices of the non-zero elements of v¥,
where ¢F is chosen as the largest integer satisfying B{i% i < Buk,

sparse, (u)

- All elements except the largest ¢ elements
and smallest q elements of u are set to zero

L?b (u)
p: mean of temaining POS'“Ye elements - Quantizes each non-zero element of u using
p~ : mean of remaining negative elements a uniform quantizer with b bits per each non-
zero element

- If pt > |1~ , the negative elements are set
to zero and the positive elements are set to pt
- If |u~| > pt, the positive elements are set
to zero and the negative elements are set to ¢~

Advanced Radio Technology Laboratory
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Appendix: Wireless Cooperative Training

= Uplink Digital Transmission (FD/HFD)
¢ Each device k aims to send logit vectors Sf,z at the i-th global iteration
foralllabels t =1,....L

¢ Adopts sparsification and quantization as
qa;, = Qu(threshys (s7,)) t=1,...,L

¢ Then it sends . . .
By ki = L(bgi + logy (qf;))
bits to send the non-zero values and the indices of the non-zero elements of g,
where qf is chosen as the largest integer satisfying B5?. < By,
thresh, (u)

- Sets all elements of the input vector u to zero
except the ¢ elements with the largest
absolute values
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Appendix: Wireless Cooperative Training

= Downlink Digital Transmission (FL, FD/HFD)

¢ The number of bits that can be transmitted from AP to devices
at the :-th global iteration is given using Shannon’s capacity

Bpi= m}jn (TD log, (1 + |qf|2 PD))

¢ Satisfying BEL < Bp;.and BLY < Bp
AP compresses and quantizes the corresponding information
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Appendix: Wireless Cooperative Training

= Uplink Analog Transmission (FL, FD/HFD)

¢ All the devices transmit their information simultaneously in an uncoded manner
to the AP

¢ Different types of power control at each devices have been studied in the
literature, namely full-power transmission, channel inversion [18],[19], and
optimized power control [26], [27]

In this paper, full-power transmission is considered for simplicity

¢ Each device have knowledge of the phase of the channel to the AP, and the AP
has full channel state information

¢ In analog transmission of a vector, only the values of number of channel uses can
be sent (usually much less than the number of network model coefficients)

*

> The gradient update should be sparsfied and compressed into a smaller
dimension

> The PS recovers the sum of gradient updates by applying AMP (approximate
message passing)

> Itis assumed that the gradient updates have similar sparsity pattern among the
devices under the i.i.d. data distribution
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Appendix: Wireless Cooperative Training

= Uplink Analog transmission (FL)
¢ Each device k aims to send Aw! at the i-th global iteration

¢ In order to enable dimensionality reduction, a pseudo-random matrix
Ay e RZTvxW with i.i.d. entries N (0,1/2Ty) is generated and shared
¢ Each device k£ computes and v = thresh, (Aw? + A¥) for sparsficaton
¢ To transmit dimension reduced vector vi = Ay vE, transmit x¥ € CTv*1,
x¥(m)=vF@m—-1)+jvF@2m),m = 1,....Ty

& Each device k transmits ~Fe i4hixk ¢ CTvx1 | ~vF = /PyTy/|xF|2 for full power

transmission K
> ‘hf
¢ The PS scales the received signal by v = —
’ N 2
b+ ()
=1

for minimum mean square error estimate of the sum Ay S v
¢ The PS applies AMP algorithm to recover 3, , v¥
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Appendix: Wireless Cooperative Training

= Uplink Analog transmission (FD)
¢ Each device k aims to send sff,t at the i-th global iteration ¢t = 1,...,L
¢ Apply repetition coding since L? is usually lower than 27y

¢ Each device applies repetition coding with the source integer bandwidth

expansion factor p = [2Ty/L?| > 1
¢ And compute vk — Rps_ék- c RrL?*x1

": -

Rp = ]-,0 %4 IL2

. N .oy T
Sii - [(Sfil)I:"'ﬂ(SiL)I]
And transmit as the same way with case of FL
T . K .,
AP multiplies R} /p to estimate D x_; vy
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Appendix: Wireless Cooperative Training

= Downlink Analog Transmission (FL, FD/HFD)

¢ For the downlink broadcast communication from AP to devices,
e The AP transmits with full power in a same manner of each device at the uplink
e Each device applies a scaling factor and the AMP algorithm in order to estimate the
vector transmitted by the AP, in a similar manner of AP at the uplink
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