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Motivation

[Source: Wikipedia]

I Graphs are useful for describing the geometric structures of
data from numerous fields, including social, energy,
transportation, and neuronal networks.



Motivation

[Source: Wikipedia]

I Importance of nodes in the graph =⇒ node centrality
I E.g., social network – most influential individuals, transport

network – cities with largest population mobility.

Research Question: Can we learn node centrality from data?



Prior works

I Graph learning: recover the complete topology
I Statistical/physical models – GMRF [Friedman et al., 2008],

dynamical systems / causation [Shen et al., 2017].
I Graph signal processing (GSP) models – smoothness of graph

signals [Dong et al., 2016], inference with structural constraints
[Egilmez et al., 2017], spectral template [Segarra et al., 2017].

I and many others...

I This work: learning graph features without the graph

I Community inference – blind community detection
[Wai et al., 2018], Bayesian learning [Hoffmann et al., 2018],
recovery from multi-graph [Roddenberry et al., 2020].

I Centrality learning – centrality ranking inference
[Roddenberry and Segarra, 2019], and this work.



Contribution

I We show that the folklore heuristic based on PCA works if
data is generated from a ‘strong’ low-pass filter.

I For data generated from a ‘weak’ low-pass filter, we propose a
boosting method with provably better estimation quality.

I Numerical experiments on synthetic and stocks data.



Graph Model and Centrality Measure
I Undirected graph G = (V ,E,A) with V = {1, . . . ,N},

symmetrix adjacency matrix A ∈ <N×N
+

I The adjacency matrix admits an eigenvalue decomposition
(EVD) as A = VΛV> s.t. V = orthogonal, Λ = Diag(λ1, ..., λN).

I Centrality is given by the eigen-centrality

ceig := TopEV(A) = v1

Network Adjacency Matrix



Graph Signal Model

I Observed data y t is produced by an excitation x t to be
‘processed’ by a graph filter H(A)

y t = H(A)x t

Excitation/ Input

𝑥𝑡 𝑦𝑡
Observation/ Output

Process on Network

𝑦1 𝑦𝑡 …



Graph Signal Model (cont’d)

Graph Filter

I The graph filter H(A) is a
matrix polynomial:

H(A) =
∑T−1

t=0 htAt

Set h(λ) :=
∑T−1

t=0 htλ
t .

I Assume 1-low pass H(A):

max
j=2,...,N

|h(λj)|/|h(λ1)| =: η < 1

I η � 1 =⇒ strong low-pass.
η ≈ 1 =⇒ weak low-pass.

I E.g., diffusion, op. dynamics.

Excitation Signal

I The input x t is controlled
by an external source zt :

x t = Bzt

I Assume a sparse
influence matrix
B ∈ <N×k , (k < N).

I E.g., influence from
external source zt are
localized to specific nodes
on graph.



Blind centrality estimation

I Idea: apply PCA on the covariance of filtered graph signals,
use the principal eigenvector as an estimate for ceig

Y = [ y1 … 𝑦𝑚]
Observation

𝐶𝑦 =
1

𝑚
෍

𝑡=1

𝑚

𝑦𝑡(𝑦𝑡)𝑇

Sample Covariance

PCA

ො𝑣1 ≔ TopEV(𝐶𝑦)

Centrality Estimation
Detected K possible
central nodes



Blind centrality estimation

Cy = H(A)BB>(H(A))> = V
[h(λ1)

.
.
.
h(λN)

]
V>BB>V

[h(λ1)

.
.
.
h(λN)

]
V>

(for ‘strong’ low pass filter) ≈ const · v1v>1

Lemma
Suppose h(λ1) > maxj=2,...,nh(λj). Then it holds that

||ceig − v̂1||2 = O(
maxj=2,...,n |h(λj)|

|h(λ1)|
) = O(η)

I Centrality estimation may be inaccurate for ‘weak’ low pass
filter (i.e., η ≈ 1).



Boosted centrality estimation

I A simple modification to strengthen the low-pass filter.
I Let ρ > 0. Consider

H̃(A) := H(A) − ρI, h̃ρ(λ) := h(λ) − ρ.

I Let µ :=
maxj=2,...,n |λj |

|λ1 |

I Observation: there exists ρ > 0 such that

maxj=2,...,n |h̃ρ(λj)|

|h̃ρ(λ1)|
= O(

maxj=2,...,n |λj |

|λ1|

maxj=2,...,n |h(λj)|

|h(λ1)|
) = O(µη)

I H̃(A) has a better low-pass condition than H(A).



Boosted centrality estimation

I Assume the external signals Z ∈ <k×M(k < M) are known,
H(A)B =: ĤB = YZ>(ZZ>)−1

I H(A)B admits a low-rank + sparse decomposition as:

H(A)B = H̃(A)B + ρB ≡ L + S

I L is a low-rank matrix and S is a sparse matrix.
I To obtain L, we solve the convex problem:

min
L̂,Ŝ
‖ĤB − L̂ − Ŝ‖2F + λL‖L̂‖? + λS‖vec(Ŝ)‖1

where λL , λS – regularization for low-rankness, sparseness.



The whole process:

Corollary
Let ṽ1 be the top left singular vector of L. Under the same
conditions as the previous Lemma. It holds

||ceig − ṽ1||2 = O(
maxj=2,...,n |λj |

|λ1|

maxj=2,...,n |h(λj)|

|h(λ1)|
) = O(µη)



Numerical Results

I Graph G: Core periphery model with connectivity p = 0.05[
1 4p

4p p

]
I N = 100 nodes (10 core nodes), M = 105 observations
I Graph filter: H(A) = (I − 0.1A)−1, λL = 0.1, λS = 0.2 + 2√

k
.

I Three settings of B for different locations of external sources
(black - central, blue - regular, red - external):



Numerical Results

I Ŝthres = 1(Ŝ ≥ 0.1) � Ŝ and replace L̂ with ĤB − Ŝthres.
I Error rate = E

[
1

10 |{1, ..., 10} ∩ ṽ1|
]

I PCA suffers from a higher error rate than the robust methods.
I The error rate for the robust methods decreases with k .
I Results are consistent with our theoretical analysis



Real data

I Data: daily return data from S&P100 stocks in May 2018 to
Aug 2019, consisting of n = 99 stocks and m = 300 samples,
collected from https://alphavantage.co.

I External source: the latent input zt on the relevant days
estimated from the interest level on Google Trend
(https://trends.google.com) on k = 5 key words: ‘trade
war’, ‘sales tax’, ‘Iran’, ‘oil crisis’ and ‘election’.

I Method: Robust Estimation with Quantization

https://alphavantage.co
https://trends.google.com


Real data

I Estimated most influenced stocks:



Real data

I Estimated most affected areas:

Trade war
pharmaceutical industry 
(WBA, PEF, MDT)

Oil crisis Election
Iran

Sales tax

technology
(INTC, ORCL, etc.) 

oil field (e.g., SLB) 
and technology
(e.g., QCOM, WBA)

technology
(e.g., GE, EMR, etc.)

and service (e.g., CVS, 
SBUX, COST) stocks

food (KHC), finance
(UNH, BLK), technology
(LLY, ORCL), energy (EXC) 
and others (GM, HD).



Summary

I PCA works if the related filter is ‘strong’ low-pass.

I With ‘weak’ low-pass filter, boosting method is applied.

I Numerical experiments on synthetic and stocks data.

Future Question: Can we learn node centrality from data
without knowing external sources?
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