

Sequential Deep Unrolling with Flow Priors for Robust Video Deraining

Xinwei Xue 1,2,*, Ying Ding 1,2, Pan Mu 1,2, Long Ma 1,2, Risheng Liu 1,2, Xin Fan 1,2

1 DUT-RU International School of Information Science & Engineering, Dalian University of Technology 2 Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province ICASSP 2020

自录 ontents 01 Introduction

O2 Proposed Method

03 Experimental Results

04 Conclusion

Introduction

• **01** Introduction

Background:

Outdoor vision systems are employed for a wide range of applications. Rain is considered as a common and challenging problem in outdoor vision systems, which seriously deteriorates the quality of image and video.

• **01** Introduction

Related work:

· Video deraining methods based on traditional optimization

FastDerain (tensor and intrinsic priors), MS-CSC (multi-scale convolutional sparse coding); Comlex prior limitation & Detail information loss in real-world scenarios

· Video deraining methods based on deep learning

SpacCNN (super-pixel alignment and compensation CNN framework); J4RNet (joint recurrent rain removal and reconstruction network);

Background smoothed or blurred & Details and textures loss

• **01** Introduction

1949 GP

Contributions:

· A new video deraining model with flow priors

The model is established to simultaneously introduce spatial and temporal information for accurately depicting the enhancement model of the current frame.

• A sequential deep unrolling network

The network is constructed based on the solving process derived from the single-frame deraining model with flow priors, to obtain data support for guaranteeing performance.

Superior performance

Ablation study demonstrates the effectiveness and necessity of our network. Extensive experiments on synthetic and real rainy video sequences fully verify our superiority.

Proposed Method

• **02** Proposed method

Video Deraining Model with Temporal and Spatial Priors

$$O = B + R$$
, (single image deraining model)

$$\min_{\mathbf{B}_t, \mathbf{R}_t} \|\mathbf{O}_t - \mathbf{B}_t - \mathbf{R}_t\|_F^2 + \Psi(\mathbf{B}_t) + \Phi(\mathbf{R}_t),$$

$$\Psi(\mathbf{B}_t) = \Psi_{tem}(\mathbf{B}_t, \{\mathbf{B}_{t-i}, \mathbf{u}_i\}_{i=1}^N) + \Psi_{spa}(\mathbf{B}_t),$$

• **02** Proposed method

MFF-Net

$$\mathbf{R}_{t}^{k+1} = \frac{\mathbf{O}_{t} - \mathbf{B}_{t}^{k}}{1 - \rho_{0}} + \frac{\rho_{0}}{\rho_{0} - 1} \mathbf{P}_{t}^{k},$$

$$\mathbf{B}_{t}^{k+1} = \frac{\mathbf{O}_{t} - \mathbf{R}_{t}^{k+1}}{1 - \rho_{1} - \rho_{2}} + \frac{\rho_{1}}{\rho_{1} + \rho_{2} - 1} \mathbf{Q}_{s}^{k} + \frac{\rho_{2}}{\rho_{1} + \rho_{2} - 1} \mathbf{Q}_{t}^{k}, \quad \mathbf{FF-Net}$$

$$\mathbf{P}_{t}^{k+1} = \underset{\mathbf{P}_{t}}{\operatorname{arg min}} \Phi(\mathbf{P}_{t}) + \frac{\rho_{0}}{2} \|\mathbf{R}_{t}^{k+1} - \mathbf{P}_{t}\|^{2},$$

$$\mathbf{Q}_{s}^{k+1} = \underset{\mathbf{Q}_{s}}{\operatorname{arg min}} \Psi_{spa}(\mathbf{Q}_{s}) + \frac{\rho_{1}}{2} \|\mathbf{B}_{t}^{k+1} - \mathbf{Q}_{s}\|^{2},$$

$$\mathbf{f}_{i}^{k+1} = \underset{\mathbf{f}_{i}}{\operatorname{arg min}} \Psi_{tem}(\mathbf{B}_{t}^{k+1}, \{\mathbf{B}_{t-i}, \mathbf{f}_{i}\}_{i=1}^{N}) + \frac{\rho_{3}}{2} \|\mathbf{u}_{i}^{k} - \mathbf{f}_{i}\|^{2},$$

$$\mathbf{Q}_{t}^{k+1} = \underset{\mathbf{f}_{i}}{\operatorname{arg min}} \Psi_{tem}(\mathbf{Q}_{t}, \{\mathbf{f}_{i}^{k+1}, \mathbf{u}_{i}^{k+1}\}_{i=1}^{N}) + \frac{\rho_{2}}{2} \|\mathbf{B}_{t}^{k+1} - \mathbf{Q}_{t}\|^{2},$$

Experimental Results

Data Set and Related Works

DALIAN

Synthesized data:

- RainSynLight25 from J4RNet^[9] -> light rain streaks
- RainSynComplex25 from J4RNet^[9] -> heavy rain streaks and sparkle noises Real data:
- The data from SpacCNN^[8]

RainSynLight25

RainSynComplex25

Real

- [9] Jiaying Liu, Wenhan Yang, Shuai Yang, and Zongming. Guo, "Erase or fill? deep joint recurrent rain re_x0002_moval and reconstruction in videos," in CVPR, 2018, pp. 3233–3242.
- [8] Jie Chen, Cheen-Hau Tan, Junhui Hou, Lap-Pui Chau, and He. Li, "Robust video content alignment and compensation for rain removal in a cnn framework," in CVPR, 2018, pp. 6286–6295.

03 Experimental Results

Results for synthesized data

	Single image detailing method video detailing method							
Dataset	Metric	JORDER[15]	DID-MDN [16]	MS-CSC[6]	FastDerain[5]	SpacCNN[8]	J4RNet[9]	Ours
RainSynLight25	PSNR	31.03	23.78	24.43	31.57	31.52	31.71	33.04
	SSIM	0.9134	0.8140	0.7312	0.9058	0.8980	0.8971	0.9643
RainSynComplex25	PSNR	19.99	17.51	16.57	26.91	21.46	22.46	28.03
	SSIM	0.6085	0.5888	0.5833	0.8011	0.5925	0.7336	0.9046
	Time (s)	0.29	0.14	3.64	0.42	4.49	6.42	1.01
		Caffe (matlab)	Python	Matlab	Matlab	MatConvNet	Caffe (matlab)	Pytorch (python

Video deraining method

[15] Wenhan Yang, Robby T Tan, Jiashi Feng, Jiaying Liu, Zongming Guo, and Shuicheng. Yan, "Deep joint rain detection and removal from a single image," in CVPR, 2017, pp. 1357–1366.

Single image deraining method

[16] He Zhang and Vishal M. Patel, "Density-aware single image de-raining using a multi-stream dense network," in CVPR, 2018, pp. 695–704.

[6]Minghan Li, Qi Xie, Qian Zhao, Wei Wei, Shuhang Gu, Jing Tao, and Deyu. Meng, "Video rain streak removal by multiscale convolutional sparse coding," in CVPR, 2018, pp. 6644–6653.

[5] Tai-Xiang Jiang, Ting-Zhu Huang, Xi-Le Zhao, Liang Jian Deng, and Yao. Wang, "A novel tensor-based video rain streaks removal approach via utilizing discriminatively intrinsic priors," in CVPR, 2017, pp. 4057–4066.

Results for synthesized rain image

MS-CSC

Ours

Results for real rain data

Results for Ablation Study

	M1	M2	M3	M4
SFD-Module	$\sqrt{}$	×	X	$\sqrt{}$
FF-Module	×	×	$\sqrt{}$	$\sqrt{}$
MFF-Module	×	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
PSNR	25.24	26.53	27.11	28.03
SSIM	0.8083	0.8258	0.8491	0.9046

Dataset: RainSynComplex25

M1: SFD-Module (Single-Frame Deraining Module)

M2: MFF-Module (Multi-Frame Fusion Module)

M3: FF-Module (Flow Fusion Module)+ MFF-Module

M4: SFD-Module + FF-Module + MFF-Module

Results for Ablation Study

Conclusion

• **04** Conclusion

- A noval video deraining model with flow priors
- A sequential deep unrolling network
- Superior performance
- Future work -> video desnowing, denoising and dehazing

Thanks for your listening