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Background|Unsupervised domain adaptation (UDA)
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Background|UDA for semantic segmentation

\When applying semantic segmentation,
much more complex scenes

l

much more complex feature space

lmuch more difficult Example
GTAS dataset[1] (source) CITYSCAPES[Z] dataset (target)
s |

i e

Adapt to

[1] Richter, Stephan R., et al. "Playing for data: Ground truth from computer games." European conference on computer vision. Springer, Cham, 2016

[2] Cordts, Marius, et al. "The cityscapes dataset for semantic urban scene understanding.” Proceedings of the IEEE conference on computer vision ﬁx- gatte!n FEPOM KA ATFDO UNIVERSITY



Method|Overview
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Stage 1 Stage 2

Two stages: Image-to-image translation Feature-level domain adaptation

Prediction for S’ Ground truth label of §’
Prediction for T w Pseudo label of T

__________________

it Translated
source set S’

Stage 1

Image-to-image translation:
(based on StarGANI3])

« Translate source set S

to target domain (referred to as S’)
for reducing visual differences

Stage 2

Feature-level domain adaptation:
« Adversarial learning

for aligning features distributions

Translated \

« Pseudo labels sourcesetS’  The-e-eoooooooooof
for further improvements

Novelty

[3] Choi, Yunjey, et al. "Stargan: Unified generative adversarial networks for multi-domain image-to-image translation." Proceedings of the IEEE : :
conference on computer vision and pattern recognition. 2018. % HOKKAIDO UNIVERSITY




Method|Image-to-image translation

Image-to-image translation
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L,..: reconstruction loss
L4 @dversarial loss (real or fake)
L.;s: domain classification loss (S or T)
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Method|Symmetric adaptation

Source domain Source domain
(labeled) (labeled)
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Discriminator
More robust than single one

Laay fromYs — OR Lgq, fromYs ﬁ
More accurate pseudo labels

Accuracy of pseudo labels has great impact on final performance.
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Method|Symmetric adaptation consistency

Feature-level domain adaptation

Prediction for §’ -
[

Ground truth label of S’

Confidence map for selecting pixels:

Mproba + Mconsist

. | Pseudo label of T
Mconfi - 2

Prediction for T

__________________

/ Translated
source set S’

M, ropq: Probability map

M_onsist- CONsistency map

Consistency can help to produce more
reliable pseudo labels.
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Experiment|Datasets and implementation details

GTAS dataset (used as source domain) ™~
« Labeled synthesis data
* Including 24966 images of urban scenes

« 1914 x 1052 resolution > 19 shared categories (road, sky, tree, car, building ...)

CITYSCAPES dataset (used as target domain /

e Unlabeled real-world data

* Including 2975 images as training set and 500 images as test set
« 2048 x 1024 resolution

Implementation details

Implementation environment: Python3 + Pytorch1.1
Network architecture: DeeplLab V2 with Resnet 101
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Experiment|Experiment results

5 Miean 1o State-of-the-art AdaptSegNet[4]: adversarial learning
479 485 Cycada[5]: Image-to-image translation

* 42 + adversarial learning

40 BDL[6]: Image-to-image translation

44 497 + adversarial learning

42 41.4 + pseudo label

40

2 Ours: Image-to-image translation

i + symmetric adversarial learning

AdaptSegNet Cycada BDL* Ours (single) Ours (fusion) + pSGUdO label (USing symmetric consistency)
Ours(single) — performance of single model

Using consistency Not using Ours(fusion) — performance fusing two models
consistency

Accuracy of pseudo 726 70.6 *results when training image-to-image translation model once
labels
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Conclusion

We have proposed an unsupervised domain adaptation method for semantic segmentation.

Architecture of our method:
» Consisting of two stages, image-to-image translation and feature-level adaptation.
In feature-level adaptation employing adversarial learning and pseudo labels.

Advantages of our method:
*  Symmetric adaptation with adversarial learning is more robust.
* Pseudo labels produced using symmetric consistency are more reliable.

Achievement:
Our method achieved state-of-the-art performance on GTA5-to-CITYSCAPES scenario.

Future work:
« The image-to-image translation method can still be improved for domain adaptation task.
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