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Introduction

Different Materials Exhibit Different Scattering Phenomena

• Light reaching the surface of a material undergoes a

set of scattering phenomena, such as surface scattering,

surface-level inter-reflections, and subsurface scattering.

• The combined effect of all scattering phenomena on an

incident light signal can be modeled by means of a time-

domain Material Impulse Response Function (MIRF),

denoted h (t; ~p), with ~p a parameter vector.

• Different materials exhibit different MIRFs and, thus,

MIRF-based material classification becomes possible.

• Time-of-Flight (ToF) sensors can be used to obtain

Fourier samples of the MIRF over dense areas.
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Figure 1: Schematics of the proposed material sensing concept showing different scattering phenomena undergone by incident light. (a): Direct surface scattering, as in a plain opaque
surface. (b): Surface-level inter-reflections, as in rough or irregular surfaces. (c): Subsurface scattering, as in materials that are not perfectly opaque (e. g., colloidal suspensions).

PMD ToF Technology

• The Photonic Mixer Device (PMD) is a core technology for AMCW-ToF depth imaging.

• (Quasi-)sinusoidally-modulated NIR (ours: 940 nm) illumination. Modulation frequencies: 20-160 MHz.

• A binary reference signal drives the separation of photogenerated charges into two integration wells.

Figure 2: a.) Schematic of a PMD pixel and controlled integration of: b.) DC light and c.) modulated light.

• Low-pass filtering effects lead to a quasi-sinusoidal cross-correlation function.The phase shift (thus the

depth) and the amplitude can be retrieved from few (e. g., Q = 4) samples:
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MIRF Fourier Sampling with PMD Sensors

• Let a material be modeled by the MIRF h (t; ~p) ∈ BΩ, such that ĥ (ω) = 0, |ω| > Ω, where Ω is the

bandwidth of h (t; ~p) and ~p is a set of parameters that are both material an scene-dependent.

• For any desired frequency ωk, such that |ωk| ≤ Ω and 1 ≤ k ≤ K, the CW-ToF camera uses a periodic

illumination modulation function pk (t) with period ∆k = 2π/ωk to probe the MIRF.

• After reaching the material surface, pk (t) is affected by surface-level and subsurface scattering, modeled

by h (t; ~p), and the signal reflected to the camera is rk (t) = (pk ∗ hk) (t) where ∗ denotes convolution.

• In the PMD pixels we use, the same signal is used both for modulation and demodulation, up to a shift

τ . Thus, the demodulation signal is ψk (t) = pk (t + τ ). Using different delays τq, q ∈ N, a set of raw

measurements at frequency ωk can be obtained, which follow the model:

mk[q] = (rk ∗ pk) (τq) = (rk ⊗ pk) (τq) (2)

where ⊗ denotes cross-correlation operation and rr (t) = rr (−t).

• From a sufficiently large number of measurements per frequency, Q, using τq = 2πq/(Qω) for q =

1, . . . , Q, an estimate of ĥ[k] can be obtained. In PMD ToF cameras Q = 4 and the method for

obtaining the phase and amplitude of ĥ[k] is known as the four phases algorithm, outlined in (1).

Methodology

Hardware and Software Highlights

• Hardware: new-generation PMD Selene module

– Extremely-low size: 11.5 mm× 7.0 mm× 4.2 mm

– Fourier sampling demonstrated for real-time multipath estimation in [1].

• Depth- and reflectivity-independent features based on the MIRF Fourier sam-

ples, ~fu,v ∈ CN , where N = K − 1, are computed pixelwise, similar to [2, 3]:
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∣∣∣ĥ [k′]
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∠ĥ [k′]−

(
k′

kref

)
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where kref denotes the index of the reference frequency, e. g., kref = 1, and

1 ≤ u ≤ nrows, 1 ≤ v ≤ ncols, where nrows × ncols is the array size.

• Using the MIRF-based and texture-independent complex features ~fu,v a

classifier, such as a decision tree of a Support Vector Machine (SVM), is trained.

Importance of Harmonic Cancellation (HC)

• If both pk (t) and ψk (t) are non-sinusoidal with overlapping harmonic content, then our estimate of ĥ[k] will suffer from harmonic

distortion. → Two possibilities for a priori HC:

– Apply a generic Q-phases algorithm, with a large enough number of samples Q. → Too slow for real time.

– Bracketed exposure with ad-hoc phase shifts per bracket, as proposed in [4] → Enabled by our own hardware.
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(b) Realistic Illumination
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(c) Realistic Illumination with HC
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(d) Realistic PMD (A-B) Control
Signal
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(e) Realistic PMD (A-B) Cross-
Correlation
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(f) Realistic PMD (A-B) Cross-
Correlation with HC

Figure 3: Relevant signals in our PMD-based ToF system from realistic simulations, with and without HC.

Experimental Results

Dense Per-pixel Material Classification

• Material classification carried out for each pixel, (u, v), using the feature vectors calculated in (3).

• A dataset consisting of 5 different materials was acquired, gathering K = 6 frequencies per ToF frame,

from 20 MHz to 120 MHz. A Gaussian kernel classification model was fitted using 30% of the data.
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Figure 4: Per-pixel material classification. 30% of the pixels are randomly
picked for training the classifier (masked in black). The remaining 70%
are used for validation. Color code in the top-left. Accuracy: 78%.

Figure 5: Confusion matrix corresponding to the
results in Fig. 5. Ground truth per columns and
prediction per rows. Rows and columns accord-
ing to Fig. 5-top-left. White: 100% accuracy.

Superpixel-based Material Classification

• Performing a classification query for all pixels in the array is time consuming for large array sizes.

Furthermore, pixels belonging to the same material are typically grouped together.

• Boundaries in the 2D image domain can be found where the MIRF, thus ~fu,v, changes abruptly. A single

or very few classification queries per superpixel suffice for robustly classifying the region’s material.

(a) NIR DC Image (b) Superpixel Boundaries (c) Superpixel-based Classification Result

Figure 6: Superpixel-based classification. The classifier is trained as before, using 30% of randomly-selected pixels. (a):
NIR DC image of a composition of four materials. Color code in Fig. 5-top-left. (b): Superpixel boundaries detected using
~fu,v. (c): Classification result from 10 classification queries per superpixel. At superpixel scale accuracy is close to 100%.
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