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Why Dereverberation?
• Reverberation degrades perceptual speech quality and intelligibility as sound reflections obscure 

signal structure
• The presence of reverberation may undermine our listening experience
• The reverberation could affect many applications, such as, hearing aids, automatic recognition (ASR) 

and speaker identification



Previous Studies
• LSTM predicts reflections in time-frequency (T-F) domain. The prediction is subtracted from the reverberant speech signal [5]

• Pro: LSTM captured time information that could help predicting the late reflections
• Con: performed on magnitude ignored phase, which could affect the results.

• DNN predicts complex ratio mask (cIRM), where the mask enhances the magnitude and phase [3]
• Pro: cIRM combined both magnitude and phase information
• Con: DNN could not capture the continuous time information

• Weighted prediction error (WPE), estimates an inverse filter that is subtracted from the reverberated speech [6, 7]
• Pro: handles both multi-channel and single-channel situation, more generalization
• Con: did not perform as well as DNN approaches

• Another approach that uses T-F domain features to predict a dereverberation mask (DM) and IRM [8]
• Pro: can do source separation and dereverberation at the same time
• Con: lack of time information



Frequency vs. T-F domain 
• Dereverberation is often performed in the time-frequency domain using mostly 

deep learning approaches

• Time-frequency domain processing, however, may not be necessary when 
reverberation is modeled by the convolution operation

• Many previous studies performed in the frequency-domain (e.g. independent 
component analysis (ICA)) [12]

• They require assumptions to hold in different environments, which is not often the case.
• A frequency-domain deep learning-based approach, however, may not need to make these 

assumptions



Problem formulation
• Objective: remove the late reflections from the corresponding reverberant 

speech signal by operating in the frequency domain

• Prediction target: direct plus early RIR in frequency domain

• Method: joint-LSTM network to predict both direct plus early RIR and late 
RIR in frequency domain



Introduction: Reverberation
• A reverberant speech signal can be computed as the convolution of a clean 

speech signal s(t) with a room impulse response (RIR), h(t):

x(t) = s(t) * h(t) 

• RIR decomposed into direct, early and late:

h(t) = hd(t) + he(t) + hl(t)

• Reverberant signal is defined as direct sound plus early and late 
reflections:

x(t) = s(t) * hd(t) + s(t) * he(t) + s(t) * hl(t)
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Network Architecture
• The first part of the network predicts the late RIR in frequency domain

• The number of neurons is set to 2048 for each LSTM layer
• Three fully connected (FCN) layers 

• The second part predicts the direct plus early RIR in frequency domain
• The number of neurons is set to 4096 for first 2 LSTM layers 
• The number of neurons is set to 2048 for the last LSTM layer
• Three FCN layers

• Rectified linear activation function used throughout
• Adam optimizer
• Learning rate: 0.0001
• Objective function: MSE



Features
• Given a time domain reverberant signal y(t) 

• Compute the 1024-point discrete Fourier transform (DFT)
• Concatenate the real and imaginary components of the 1024-point DFT as input 
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• Most approaches ignore phase information 
• Recently, research has shown that including phase information improves results [3]
• Our approach, given the real and imaginary components, means magnitude and 

phase information are addressed



Training Labels
• Predict transfer functions of the 

RIRs instead of speech: 
• Transform the direct plus early RIR 

(hde(t)) and the late RIR (hl (t)) into 
1024- point DFTs (N = 1024)

• Concatenate the real and imaginary 
components of the resulting DFT 
into one
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Objective Function
• Trained using standard back propagation algorithm with mean-square 

error cost function
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• N is the input dimensions, which is 1024 units



Experiments
• Dataset: TIMIT corpus
• Randomly select 3000, 1000, and 1000 sentences to construct 

training, validation and testing datasets
• Simulate RIRs from 5 different rooms via image method [4]. The 

distance between the receiver and the speaker is set to 1m in 
all cases

• Select 3 different reverberation times: 0.3s, 0.6s and 0.9s
• 1500 different RIRs for training set, 500 different RIRs for 

validation set, and another 500 RIRs for testing set



Evaluation
• We convolve the estimated direct plus early RIR with clean speech, we 

call it estimated speech

• Compare the estimated speech with the true direct plus early speech 
signal

• Perceptual evaluation of speech quality (PESQ) [9]
• PESQ score ranges from -0.5 to 4.5

• Short-Time Objective intelligibility (STOI) [10]
• STOI measure ranges from 0 to 1

• Signal to distortion (SDR) [11]
• No specific range

• Overall, higher values indicate better performance



Results
SDR (db)) STOI PESQ

0.3 0.6 0.9 0.3 0.6 0.9 0.3 0.6 0.9

Mixture -1.89 -2.98 -4.01 0.58 0.48 0.43 1.7 1.42 1.25

Joint FCN 7.69 7.23 8.03 0.77 0.66 0.67 2.28 2.02 2.11

Joint LSTM 7.53 9.32 8.92 0.60 0.64 0.68 2.12 2.10 2.13

cIRM [3] 7.90 7.32 7.95 0.73 0.70 0.71 2.28 2.03 2.09

IRM [2] 7.62 7.27 7.54 0.72 0.70 0.70 2.23 2.00 2.01
Spectral 

Mapping [1] 7.28 7.25 7.48 0.71 0.69 0.68 2.01 1.97 1.90

• SDR:
• cIRM performs best at T60 of 0.3
• Joint-LSTM outperforms the comparison 

approaches as the T60 increases

• STOI:
• Proposed approaches has minor 

improvements compared with mixture, but 
not as good as cIRM and IRM

• PESQ:
• Proposed approaches outperforms the 

baseline approaches

• Overall, our joint learning approaches 
perform better as T60 increases

• More noticeably, the results reveal that 
frequency-domain processing often 
outperforms T-F domain processing. 

Table 1. Comparison with different approaches



Conclusion
• Our approach managed to extract RIR frequency information and enhance the 

reverberant signal

• Our approach enhanced reverberant speech in the complex domain by 
handling both real and imaginary information

• Our approach deviates from recent methods by processing in the frequency 
domain

• The joint-learning method, by adding predicted late information to the network, 
helps to improve the direct sound plus early reflection that is hard to predict 
directly
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