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ADMM is a popular algorithm for solving convex optimization problems.

Applying this algorithm to distributed consensus optimization problem results in a

fully distributed iterative solution which relies on processing at the nodes and

communication between neighbors. Local computations usually suffer from

different types of errors, due to e.g., observation or quantization noise, which can

degrade the performance of the algorithm. In this work, we focus on analyzing the

convergence behavior of distributed ADMM for consensus optimization in

presence of additive node error. We specifically show that (a noisy) ADMM

converges linearly under certain conditions and also examine the associated

convergence point. Numerical results are provided which demonstrate the

effectiveness of the presented analysis.

 Consensus optimization is a popular distributed optimization problem which 

arises in various domains and is formulated by

min.
 𝑥

 𝑖=1
𝑁 𝑓𝑖(  𝑥)

 Considering local variable 𝑥𝑖 at each node, variable 𝑧𝑖𝑗 over each arc 𝑖, 𝑗 ,to 

enforce equality of local variables 𝑥𝑖’s, and concatenating 𝑥𝑖’s and 𝑧𝑖𝑗’s in 

𝑥 𝑎𝑛𝑑 𝑧, respectively, the problem can be rewritten in ADMM form

min
𝑥,𝑧

𝑓 𝑥 + 𝑔(𝑧)

𝑠. 𝑡. 𝐴𝑥 + 𝐵𝑧 = 0

 ADMM based distributed algorithm is proposed to solve consensus problem 

over a connected graph 

 If 𝑓𝑖’s are strongly convex and their gradients are Lipschitz continuous, 𝑥𝑘 is 

R-linearly convergent to its optimal point 𝑥∗. 

The local objective functions in a consensus are usually computed based on some observations and measurements, which are noisy 

in general. The computed results at a given node are always quantized prior to communication to another node in an iteration. In 

addition, certain local computations are too complex to carry out exactly and are usually replaced by approximations.

 𝑥𝑖
𝑘 = 𝑥𝑖

𝑘 + 𝑒𝑖
𝑘 ⟹  𝑥𝑘 = 𝑥𝑘 + 𝑒𝑥

𝑘 ⟹  𝑧 = 𝑧𝑘 + 𝑒𝑧
𝑘

Theorem: Consider optimization problem 

min
𝑥,𝑧

𝑓 𝑥 + 𝑔(𝑧)

𝑠. 𝑡. 𝐴𝑥 + 𝐵𝑧 = 0
and its optimal points 𝑥∗and𝑧∗. Assume that𝑓𝑖’s (𝑓) are strongly convex functions with moduli 𝑚𝑓𝑖

(𝑚𝑓) and have Lipschitz

continuous gradients 𝛻𝑓𝑖(𝛻𝑓) with constant 𝑀𝑓𝑖
(𝑀𝑓 ). if 𝑒𝑧
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where 𝑢𝑘 ≜ 𝑧𝑘

𝛽𝑘 , 𝐺 =
𝑐𝐼 0

0
1

𝑐
𝐼 ,𝑀− 𝛽𝑘 = 𝛼𝑘, and  𝑀+ and 𝑀− are the extended unoriented and oriented network incidence 

matrices, respectively.

Corollary: If 𝑒𝑥 2 = 𝜎𝑒 and constant over all iterations, an upper bound on the error 𝑥𝑘 − 𝑥∗
2

for 𝑘 ⟶ ∞ is max
𝑖

𝑁𝑖 𝜎𝑒.

We consider Algorithm 1 to solve the optimization problem

min
 𝑥

 

𝑖=1

𝑁
1

2
𝑦𝑖 − 𝑀𝑖  𝑥 2

2

 𝑥 ∈ ℝ3, 𝑀𝑖 ∈ ℝ3×3 , 𝑁 = 200

𝑦𝑖 = 𝑀𝑖  𝑥 + 𝑛𝑖 , 𝑛𝑖 ~𝒩(0,10−3𝐼3)

𝑒𝑥 = 𝒩(0, 𝜎𝑒)

Define connectivity ratio as 𝜌 =
𝐸

𝐸𝑐
where 𝐸 is the number of  edges in the network and 𝐸𝑐 is the number of edges in a 

corresponding complete graph.

Consider  𝑥𝑖,𝑘
𝐷 and  𝑥𝐶 as respectively the distributed and centralized estimates of  𝑥 (at node 𝑖 and iteration𝑘). Our performance 

metrics is error ℰ𝑖,𝑘
𝐷,𝐶 =

 𝑥𝑖,𝑘
𝐷 −  𝑥𝐶

2

2

 𝑥𝐶
2
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We analyzed the convergence behavior of distributed ADMM for consensus

optimization in presence of additive computation error, which is for example due

to observation or quantization noise at the nodes. Specifically, we showed that (a

noisy) ADMM converges linearly under certain conditions and also examined the

associated convergence point. Numerical results in the case of collaborative

mean squared error estimation was presented. Next steps of research include

analytical assessment of optimized ADMM parameters in this setting and with

different system and network parameters.

Performance of noisy distributed ADMM, error reduction vs. iteration as a function of 

𝜎𝑒 and c. ρ=0.04.

Algorithm1

Input functions 𝑓𝑖; Initialization: for all 𝑖 ∈ 𝒱 , set 𝑥𝑖
0 = 𝛼𝑖

0 = 0, Set parameter 

𝐶 > 0

For all 𝑘 = 1, 2, … every node 𝑖 do

1. Update 𝑥𝑖
𝑘+1 by solving

𝛻𝑓𝑖 𝑥𝑖
𝑘+1 + 𝛼𝑖

𝑘 + 2𝐶 𝑁𝑖 𝑥𝑖
𝑘+1 − 𝐶 𝑁𝑖 𝑥𝑖

𝑘 +  𝑗∈𝑁𝑖
𝑥𝑗

𝑘 = 0

2.Update 𝛼𝑖
𝑘+1 = 𝛼𝑖

𝑘 + 𝐶 𝑁𝑖 𝑥𝑖
𝑘 −  𝑗∈𝑁𝑖

𝑥𝑗
𝑘

𝑓1
𝑓3

𝑓2

𝑓5

𝑓6

𝑓4

𝑓7
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e
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