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Multidomain graph data

Recommendation systems
Item-user domain 

Brain networks (fMRI, EEG time-series)
Voxel-time domain

Sensing networks 
Space-physical conditions-time domain PM2.5

PM10
CO2

time

Dynamic point clouds
Space-time domain 



Graphs and graph signals

Ø Datasets with irregular support can be represented using a graph 

Graph signal
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Ø Graph with     nodes is represented using a matrix 

• could be a graph Laplacian matrix, adjacency matrix, or its variants

• is non zero only if          and/or  



Smooth signals on a graph
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Ø Smoothness of a graph signal is quantified using the
Laplacian quadratic form

Ø Smaller the quadratic term, smoother is the graph signal
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Ø Many graphs can be factorized into two or more smaller graphs

Ø We will focus on the Cartesian product

Ø Then the Laplacian matrices can be related as 

Product graphs
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• Cartesian product (colored edges)

• Kronecker product (gray edges)

• Strong product (all edges)  

is the Kronecker product
is the Kronecker sum



Product graph signals
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Ø Let denote the graph data on 

Ø Each node in the graph        is represented by a 
pair of vertices in its graph factors

Ø Any multidomain graph signal can be represented as

P

P



The question!

Ø We develop solvers assuming that

1. The graph
2. The graph signals are smooth on the underlying graph

can be factorized as

Given the graph data                 , estimate the graph Laplacian matrices
of the graph factors      and      that best explain the data
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Solution by adapting existing works
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Ø Ignoring the product structure in        we can compute        using [Dong et al. 2016]

Set of valid Laplacian matrices: 

Ø Solve a convex program to obtain the graph factors

Ø Two step approach
Ø Requires computing a size- Laplacian matrix in step 1

X. Dong et al. “Learning Laplacian matrix in smooth graph signal representations.” IEEE Trans. Signal Process., vol. 64, no. 23, 
pp. 6160–6173, Dec 2016.

Step 1: graph learning

Step 2: product graph factorization

Remarks:

Avoids trivial solution

Two-step method



Ø But we observe                     that is related to

Ø Typically, we might not have access to the original data     

Ø The Laplacian matrices of the graph factors can be jointly estimated by solving 

Ø Recall the set of valid Laplacian matrices: 

Ø Task-specific loss function:

For noisy observations: 

Task-cognizant product graph learning
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Promotes sparsityPromotes smoothness

Avoids trivial solution



Proposed method – one step approach
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Ø The optimization problem

is equivalent to the following convex quadratic program

ü Symmetric structure of the Laplacian matrices can be leveraged

ü Admits an explicit solution based on a water-filling-like algorithm (obtained by solving the KKT 
conditions)

With 



Ø Obtained by the Cartesian product of two community graphs and 

Results on synthetic data
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Ø We generate a graph with nodes

Ø We generate graph signals on

Ø Given we obtain using

• Solver 1: This paper, proposed water-filling method
• Solver 2: Factorizing the graph obtained from [Dong et al. 2016]

Ø Estimation performance in terms of the F-measure



Results on synthetic data

12

Ground truth                         Solver 1                                  Solver 2
This paper (one step water-filling)   (Dong et al. 2016 + factorization)

Community structures                 Preserved                                     Lost          



Results on real data – air quality dataset
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Ø We use data, collected over stations for each day in year

Ø The data has many missing entries. Therefore, we perform joint matrix completion 
and product graph learning

with                                                                     and observation mask 

in India

Ø We use alternating minimization to solve the above non-convex problem method to solve

Step 1:
Solve for by fixing  using Solver 1

Step 2:
Solve for by fixing  

V. Kalofolias et al., “Matrix completion on graphs,” arXiv preprint, arXiv:1408.1717, 2014.

[Kalofalias et al. 2014]



Results on real data
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Weather stations                                                     Seasons/months

Ø Close by weather stations are not necessarily connected

Ø Seasonal variation of the PM2.5 concentration is captured in the temporal graph



Conclusions

15

Ø We proposed a framework for learning graphs that can be factorized as the Cartesian product of 
two smaller graphs from multidomain datasets

Ø We have shown that the product graph learning can be posed as a convex optimization problem 
with an explicit and efficient water-filling-like solution

Ø We applied the developed framework to real air pollution data collected across different locations 
in India to impute the missing entries and to leverage the underlying graph structure, we 
estimate the underlying graph factors
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