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 Dictionary learning problem as follows[1]:

1) Sparse representation:

2) Dictionary update:

Stage 1 is an ordinary sparse coding problem [2]-[5], which can 

be done, for example, by Orthogonal Matching Pursuit (OMP) 

[6].
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Dictionary learning

𝑿(𝑘+1) = argmin
𝑿∈χ

𝒀 − 𝑫(𝑘)𝑿
𝐹

2
(2)

𝑫(𝑘+1) = argmin
𝑫∈ξ

𝒀 − 𝑫𝑿(𝑘+1)
𝐹

2
(3)



Mutual and Average Coherence
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 1) Mutual coherence:

 2) Average coherence:
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𝜇 = max
𝑖≠𝑗

|𝑑𝑖
𝑇𝑑𝑗|

𝑑𝑖 2 𝑑𝑗 2

[7], 𝐷 ∈ ℝ𝑚×𝑛 → 𝜇𝑤𝑒𝑙𝑐ℎ =
𝑛−𝑚

𝑚(𝑛−1)

𝜇𝑤𝑒𝑙𝑐ℎ ≤ 𝜇 ≤ 1 [8]



 Mutual coherence plays an important role in sparse 

approximation. A signal with a sparse representation 𝑥 with 

sparsity level (number of non-zero elements) 𝑠, can be 

recovered from 𝑦 = 𝐷𝑥 when [9]:

 According to above equation, dictionaries with low mutual

coherence are better for high 𝑠.
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Decreasing mutual and average coherence
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 Some of algorithms reducing mutual coherence of dictionary by 

solving the following problem [10]:

This problem does not yield closed form solution for updating the 

dictionary because the gradient of above cost function over 𝐷 is not 

linear.

45th International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2020).



Our proposed method

 Convex approximation[11]:

in which, it is assumed that 𝑫− 𝑫0 𝑿− 𝑿0 𝐹 and ԡ(𝑫−

6

𝑫 = 𝑫0 +𝑫- 𝑫0 , 𝑿 = 𝑿0 + 𝑿- 𝑿0

𝑫𝑿 = 𝑫0 +𝑫− 𝑫0 𝑿0 + 𝑿− 𝑿0 ≈ 𝑫𝟎𝑿 + 𝑫𝑿𝟎 −𝑫𝟎𝑿𝟎

𝑫𝑇𝑫 = 𝑫𝟎 +𝑫− 𝑫𝟎
𝑻 𝑫𝟎 +𝑫−𝑫𝟎 ≈ 𝑫𝟎

𝑇𝑫+𝑫𝑇𝑫𝟎 −𝑫𝟎
𝑇𝑫𝟎

𝑫∗, 𝑿∗

= argmin
𝑫∈ξ,𝑿∈χ

𝒀 + 𝑫𝟎𝑿𝟎 − 𝑫𝟎𝑿 − 𝑫𝑿𝟎 𝐹
2 +

𝜆

2
𝑫𝑻𝑫𝟎 +𝑫𝟎

𝑻𝑫−𝑫𝟎
𝑻𝑫𝟎 −𝑯

𝐹

2
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1) Sparse representation:

2) Dictionary updating:

𝐗 = 𝐗𝟎 = 𝐗𝑘+1, 𝐃𝟎 = 𝐃𝑘
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𝐃 = 𝐃𝑘 , 𝐃𝟎 = 𝐃𝑘−1, 𝐗𝟎 = 𝐗𝑘 , 𝐙𝑘 = 𝐘 − 𝐃𝑘 − 𝐃𝑘−1 𝐗𝑘

𝐗𝑘+1 = argmin
𝐗∈χ

𝐙𝑘 − 𝐃𝑘−1𝐗 F
2

𝑫𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑫∈𝜉

𝒀 − 𝑫𝑿𝑘+1 𝐹
2 +

𝜆

2
𝑫𝑇𝑫𝑘 + 𝑫𝑘

𝑇𝑫−𝑫𝑘
𝑇𝑫𝑘 −𝑯𝑘 𝐹

2

Our proposed method (continued)
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Our proposed method (continued)
 Dictionary updating:

𝑀(𝑫)= 𝒀 − 𝑫𝑿𝑘+1 𝐹
2 +

𝜆

2
𝑫𝑇𝑫𝑘 +𝑫𝑘

𝑇𝑫−𝑫𝑘
𝑇𝑫𝑘 −𝑯𝑘 𝐹

2

𝛻𝑫𝑀 𝑫 = 𝑫𝑿𝑘+1 − 𝒀 𝑿𝑘+1
𝑇 + 𝝀𝑫𝑘(𝑫

𝑇𝑫𝑘 +𝑫𝑘
𝑇𝑫−𝑫𝑘

𝑇𝑫𝑘 −𝑯𝑘)

𝑫𝑾𝑘 + 𝜆𝑫𝑘𝑫
𝑇𝑫𝑘 + 𝜆𝑫𝑘𝑫𝑘

𝑇𝑫 = 𝑪𝑘

After some calculation (the details are in the paper), we can 

write:
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𝑣𝑒𝑐 𝑫𝑘+1 = 𝑾𝒌 ⨂𝐼𝑚 + 𝐼𝑛⨂ 𝜆𝑫𝑘
𝑇𝑫𝑘 + 𝜆𝑩𝑘

−1
𝑣𝑒𝑐(𝑪𝑘)



Summary of our proposed method(Convex-GSD)

1) Sparse coding:

𝐙𝑘= 𝐘 − 𝐃𝑘 − 𝐃𝑘−1 𝐗𝑘

2) Dictionary updating:

3) Updating matrix H [5]:
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𝑿𝑘+1=OMP(𝒁𝑘, 𝑫𝑘−1, 𝑠)

𝑣𝑒𝑐 𝑫𝑘+1 = 𝑾𝒌 ⨂𝐼𝑚 + 𝐼𝑛⨂ 𝜆𝑫𝑘
𝑇𝑫𝑘 + 𝜆𝑩𝑘

−1
𝑣𝑒𝑐(𝑪𝑘)
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Simulation Results:

 Apply our innovation on the GSD[10] and RAMC[12] and

results in Convex-GSD and Convex-RAMC, respectively.

 The criteria to evaluate:

1) Root Mean Square Error (RMSE) :

ε𝐾 = 
𝒀−𝑫𝑘𝑿𝑘

𝐹

𝑚𝐿

2) Percentage of atom recovery:

𝑚𝑖𝑛𝑗(1 − 𝑫 : , 𝑖 𝑇𝑫𝒕(: , 𝑗) ) < 0.01.

3) Mutual and average coherence.
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𝑫 ∈ ℝ 20×50, 𝑠 = 7, λ = 5, 𝑆𝑁𝑅 = 30dB, 𝒀 ∈ ℝ 20×2500
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According to this slide and slide 12 too, our two algorithms (include Convex)

have higher convergence rate and lower RMSE in comparison to the other

algorithms while mutual and average coherence are same.
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𝑫 ∈ ℝ 20×50, 𝑠 = 7, λ = 5, 𝑆𝑁𝑅 = 20dB, 𝒀 ∈ ℝ 20×2500
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Number of iterations and average running time (in seconds) for 

achieving percentage of recovery= 80. Average running times are 

reported in parentheses. In this table, s = 7 and SNR= 30dB are 

supposed.
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According to this table, our algorithms (include Convex) have higher

convergence rate in comparison to the other algorithms.
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Conclusions
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 Convex method for dictionary learning with low mutual coherence.

 Our approach increases the convergence rate and decreases RMSE.

 Mutual and average coherence of our algorithms are reduced well.
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Thank you for your attention
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